
 



 

 

 

 

                                           

ABOUT THE BOOK 

This book contains important .NET interview questions that will help you prepare for 

technical interviews. The questions are selected to cover the topics that are most 

commonly asked in real interviews, so you can be well-prepared and confident. 

 

ABOUT THE AUTHOR 

Rohatash Kumar has over 15 years of experience in software  

development. He has helped many candidates succeed in technical interviews at well-

known tech companies by sharing his knowledge and guidance. 

 

 

 

 

PREFACE 



      Topic      (Number of Questions) 

1. Partial Class in C# 1 

2. Constructor in C# 1 

3. Encapsulation in C# 1 

4. Single Responsibility Principle 1 

5. MVC- Action Method Return Types 1 

6. MVC-ViewData vs ViewBag vs TempData 1 

7. MVC- Action Method Return Types 1 

8. Cors in .NetCore 1 

9. Design Patterns Introduction 1 

10. C#-Singleton Design Pattern 1 

11. C#-Factory Design Pattern 1 

12. Angular Custom Pipe 1 

13. Angular Subject vs BehaviorSubject 1 

             TOTAL 12 

 

 



patterns act as blueprints in codinWhat are the key benefits of using design patterns listed in the file? 

 

Partial Class Introduction 

1. A partial class allows a single class to be divided into two separate 

physical files. During compile time these files get compiled into a single 

class. 

2. A partial class is created by using a partial keyword. 

3. The partial keyword indicates that other parts of the class, struct, or 

interface can be defined in the namespace. 

4. All the parts must use the partial keyword. 

5. All the parts must be available at compile time to form the final type. 

6. All the parts must have the same accessibility such as public, private 

and so on. 

The following class definition defines a partial class in C#: 

//partial class 
Public partial class PartialClass 
{ 
} 

 

Suppose you have a Person class. That definition is divided into two physical source files, Person1.cs and Person2.cs. Then these two files have a class that is a partial 

class. You compile the source code and then create it in a single class. 

 

 Partial Class in C# 



Real World Example 

Recently, In My Project, I am using Entity Framework Database First Approach. In that case, the Entity Framework will create the models i.e. the classes based on the 

database and it creates the classes as partial classes. Next, I want to do some modifications with the auto-generated partial classes like adding some additional 

properties or adding some attributes. But, if I do the modification with the auto-generated partial classes, then my changes will be lost when I update the EDMX file. 

So, what I generally do is, create a partial class, and in that partial class, I do all the customization. 

In the following figure you can see how the auto-generated code has partial classes and partial method. 

 

 

The partial methods later can be extended for including custom logic. For instance, you can see in the following code for the preceding auto-generated class 

"tblCustomer" we have used partial methods to override the "OnCustomerCodeChanged" event to ensure that the customer code is not more than 6 length. 

 

 



public partial class tblCustomer 
{ 
    partial void OnCustomerCodeChanged() 
    { 
        if (_CustomerCode.Length > 6) 
        { 
            throw new Exception("Customer code can not be greater than 6"); 
        } 
    } 
} 
 

So, by using partial classes and partial methods, LINQ and EF framework keep auto-generating classes and by using partial methods we can customize the class with 

our own logic. 

Why Partial Classes? 

The following are some important points which explain why use partial classes in C#. 

1. Modularization - Partial classes enable breaking a class's definition into 

multiple files. 

2. Organized Development - Developers can work on different parts of a 

class simultaneously without conflicts. 

3. Code Generation - Commonly used in tools or frameworks to generate 

code, while developers can add custom logic separately. 

4. Maintenance - Enhances code readability and maintainability by 

segmenting class logic. 

5. Extensibility - Additional functionality can be added to existing classes 

without altering the original source code. 

Advantages of Partial Class 

1. With the help of partial classes, multiple developers can work 

simultaneously in the same class in different files. 

2. With the help of a partial class concept, you can split the UI of the 

design code and the business logic code to read and understand the 

code. 

3. When you were working with automatically generated code, the code 

can be added to the class without having to recreate the source file like 

in Visual studio. 

4. You can also maintain your application in an efficient manner by 

compressing large classes into small ones. 

 



For Example 

let us understand Partial Class with an example. First, create a console application and then add a class file with the name Student.cs. Once you add the class file, 

then copy and paste the following code into it. Here, please notices the class name is Student and in this class, we have declared 3 auto-implemented properties i.e. 

FirstName, LastName and Gender. Here, we have also declared 2 public methods i.e. DisplayName and DisplayStudentDetails. 

using System; 
 
namespace PartialClassDemo 
{ 
    public class Student 
    { 
        public string FirstName { get; set; } 
        public string LastName { get; set; } 
        public string Gender { get; set; } 
 
        public void DisplayFullName() 
        { 
            Console.WriteLine($"Full Name is : {FirstName} 
{LastName}"); 
        } 
 
        public void DisplayStudentDetails() 
        { 
            Console.WriteLine("Employee Details : "); 
            Console.WriteLine($"First Name : {FirstName}"); 
            Console.WriteLine($"Last Name : {LastName}"); 
            Console.WriteLine($"Gender : {Gender}"); 

        } 
    } 
 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            Student emp = new Student 
            { 
                FirstName = "Rohatash", 
                LastName = "Kumar", 
                Gender = "Male" 
            }; 
            emp.DisplayFullName(); 
            emp.DisplayStudentDetails(); 
            
        } 
    } 
} 

Output 

 



Splitting Above Class Definition into 2 Files using Partial Classes in C# 

Now we split the above Student class definition into two different class files. One class file is going to contain all 3 public auto-implemented properties (FirstName, 

LastName and Gender) and the other class file is going to contain the two public methods i.e. DisplayName and DisplayStudentDetails that we have defined inside 

the Student class. 

Now we need to add two class files with the name StudentOne.cs and StudentTwo.cs The StudentOne.cs class file going to contain all 3 public auto-implemented 

properties (FirstName, LastName, Gendar) and the StudentTwo.cs class file going to contain the two public DisplayName and DisplayStudentDetails methods. Even 

though the class file names are different, the class name is going to be the same, and in this case, we are providing the class name as Student in both the class file as 

well as we are making the class as partial by using the partial keyword. 

StudentOne.cs File 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
 
namespace partialExample 
{ 
    public partial class Student 
    { 
        public string FirstName { get; set; } 
        public string LastName { get; set; } 
        public string Gender { get; set; } 
    } 
} 
 

StudentTwo.cs File 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
 



namespace partialExample 
{ 
    public partial class Student 
    { 
        public void DisplayFullName() 
        { 
            Console.WriteLine($"Full Name is : {FirstName} {LastName}"); 
        } 
 
        public void DisplayStudentDetails() 
        { 
            Console.WriteLine("Employee Details : "); 
            Console.WriteLine($"First Name : {FirstName}"); 
            Console.WriteLine($"Last Name : {LastName}"); 
            Console.WriteLine($"Gender : {Gender}"); 
        } 
    } 
} 
 

Using the Partial Class in C# 

Now, we are going to use the Partial classes whose definition is split across two different class files. We need to use the Partial class just like a normal class. We can 

create an instance and we can also invoke the members using the instance. 

using System; 
 
namespace partialExample 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            Student emp = new Student 
            { 
                FirstName = "Rohatash", 
                LastName = "Kumar", 
                Gender = "Male" 



            }; 
            emp.DisplayFullName(); 
            emp.DisplayStudentDetails(); 
            
        } 
    } 
} 
 

Output 

 

When do we need to use Partial Class in C#? 

There are several situations when splitting a class definition is desirable 

1. Organization - For very large classes, breaking down the class into 

logical chunks (e.g., grouping methods by their functionality) can make 

the codebase easier to navigate and maintain. 

2. When working on large projects, splitting a class over separate files 

allows multiple programmers to work on it simultaneously. 

3. When working with automatically generated source code, the code can 

be added to the class without having to recreate the source file. Visual 

Studio uses this approach when creating windows form, Web service 

wrapper code, and so on. 

4. Code generation - In scenarios where parts of the codebase are 

generated automatically (e.g. - designer files in Windows Forms, web 

service reference classes, or entities in Entity Framework), separating 

auto-generated code from custom code through partial classes helps in 

maintaining the codebase. It ensures that manually written code does 

not get overwritten by the auto-generation process. 

 



 

  

Constructor Introduction 

A constructor is a special method in a class that is automatically called when an object of that class is created. It is used to initialize the object. Constructor name will 

same as of Class name. 

using System; 
 
namespace Constructorproject 
{ 
    public class Person 
    { 
        public string FirstName; 
        public string LastName; 
 
        // Constructor 
        public Person(string firstName, string lastName) 
        { 
            Console.WriteLine(firstName + " " + lastName); 
        } 
    } 
    class Program 
    { 
        static void Main() 
        { 
            // Usage 
            Person person = new Person("Rohatash", "Kumar"); 
 
            Console.ReadLine(); 
        } 
    } 
} 
 

 

  
 

Constructor in C# 



When to use constructors in real applications? 

1. Initialization - To set initial values for object attributes. 

2. Resource Allocation - To allocate resources like memory or file handles. 

3. Dependency Injection - To inject dependencies required by the object. 

1. Initialization 

To set initial values for object attributes. 

using System; 
namespace delegateproject 
{ 
    public class Person 
    { 
        public string FirstName; 
        public string LastName; 
 
        // Initialization (Parameterized) Constructor 
        public Person(string firstName, string lastName) 
        { 
            FirstName = firstName; 
            LastName = lastName; 
            //Console.WriteLine(firstName + " " + lastName); 
        } 
    } 
    class Program 
    { 
        static void Main() 
        { 
            // Usage 
            Person person = new Person("Rohatash", "Kumar"); 
 
            Console.ReadLine(); 
        } 
    } 
} 



 

2. Resource Allocation 

To allocate resources like memory or file handles. This example demonstrates how a constructor can be used to allocate resources (opening a file) and how the 

destructor can be used to clean up those resources (closing the file). 

using System; 
using System.IO; 
 
public class FileReader 
{ 
    private StreamReader _reader; 
    public string FilePath { get; } 
 
    // Constructor 
    public FileReader(string filePath) 
    { 
        FilePath = filePath; 
 
        try 
        { 
            // Allocate the resource (open the file) 
            _reader = new StreamReader(FilePath); 
            Console.WriteLine("File opened successfully."); 
        } 
        catch (FileNotFoundException ex) 
        { 
            Console.WriteLine($"File not found: 
{ex.Message}"); 
        } 
        catch (Exception ex) 
        { 
            Console.WriteLine($"An error occurred: 
{ex.Message}"); 
        } 
    } 
 

    // Method to read file content 
    public string ReadFile() 
    { 
        if (_reader == null) 
        { 
            return "Reader is not initialized."; 
        } 
 
        try 
        { 
            return _reader.ReadToEnd(); 
        } 
        catch (Exception ex) 
        { 
            return $"An error occurred while reading the 
file: {ex.Message}"; 
        } 
    } 
 
    // Destructor to clean up resources 
    ~FileReader() 
    { 
        if (_reader != null) 
        { 
            _reader.Close(); 
            Console.WriteLine("File reader closed."); 
        } 
    } 
} 
 
public class Program 



{ 
    public static void Main(string[] args) 
    { 
        // Provide a valid file path 
        string filePath = "example.txt"; 
 
        // Create an instance of FileReader 

        FileReader fileReader = new FileReader(filePath); 
 
        // Read the file content 
        string content = fileReader.ReadFile(); 
        Console.WriteLine(content); 
    } 
} 

 

3. Dependency Injection 

To inject dependencies required by the object. This example illustrates how dependency injection allows you to decouple the Service class from the specific 

implementation of the ILogger interface, promoting flexibility and testability. 

using System; 
 
public interface ILogger 
{ 
    void Log(string message); 
} 
 
public class ConsoleLogger : ILogger 
{ 
    public void Log(string message) 
    { 
        Console.WriteLine($"Log: {message}"); 
    } 
} 
 
public class Service 
{ 
    private readonly ILogger _logger; 
 
    // Constructor Injection 
    public Service(ILogger logger) 
    { 
        _logger = logger; 
    } 

 
    public void DoWork() 
    { 
        _logger.Log("Work is being done."); 
        // Perform work 
        Console.WriteLine("Service is doing work."); 
    } 
} 
 
public class Program 
{ 
    public static void Main(string[] args) 
    { 
        // Manually create the dependency 
        ILogger logger = new ConsoleLogger(); 
 
        // Inject the dependency into the service 
        Service service = new Service(logger); 
 
        // Use the service 
        service.DoWork(); 
    } 
} 

 



 

Types of Constructors 

There are several types of constructors, each serving a different purpose. Here are the main types of constructors. 

 

 

There are several types of constructors, each serving a different purpose. Here are the main types of constructors. 

1. Default Constructor 

2. Parameterized Constructor 

3. Copy Constructor 

4. Static Constructor 

5. Private Constructor 

  

 

 

 

 



  

  

 

Encapsulation Introduction 

The process of binding or grouping the state(Data Members) and behaviour(Data Functions) together into a single unit(class, interface, struct) is called Encapsulation 

in C#. 

 

We can define the above as following. 

• State - Data Members 

• Behavior - Data Functions 

• Unit - class, interface, struct 

  Encapsulation in C# 



The Encapsulation Principle ensures that the state and behavior of a unit (i.e., class, interface, struct, etc.) cannot be accessed directly from other units (i.e., class, 

interface, struct, etc.). 

In C#, this is typically achieved through the use of classes. The idea behind encapsulation is to keep the implementation details of a class hidden from the outside 

world, and to only expose a public interface that allows users to interact with the class in a controlled and safe manner. 

Real-World Example of Encapsulation 

As we already discussed, one of the real-world examples of encapsulation is the Capsule, as the capsule binds all its medicinal materials within it. In the same way, 

C# Encapsulation, i.e., units (class, interface, enums, structs, etc) encloses all its data member and member functions within it. 

 

 

 

 



Example 

We want to create a BankAccount class with encapsulated attributes such as balance, and methods like Deposit, Withdraw, and GetBalance. We'll encapsulate 

these attributes by making them private and provide public methods to interact with them. 

public class BankAccount 
{ 
    private decimal balance; 
 
    public BankAccount(decimal initialBalance) 
    { 
        balance = initialBalance; 
    } 
 
    public void Deposit(decimal amount) 
    { 
        balance = balance + amount; 
    } 
 
    public void Withdraw(decimal amount) 
    { 
        if (balance >= amount) 
        { 
            balance =balance- amount; 
        } 
        else 
        { 
            Console.WriteLine("Invalid withdrawal amount or 
insufficient balance."); 

        } 
    } 
    public decimal GetBalance()  
    {  
        return balance;  
    } 
} 
 
class Program 
{ 
    static void Main(string[] args) 
    { 
        BankAccount myAccount = new BankAccount(1000); 
 
        myAccount.Deposit(200); 
        Console.WriteLine("Balance: " + 
myAccount.GetBalance()); 
 
        myAccount.Withdraw(800); 
        Console.WriteLine("Balance: " + 
myAccount.GetBalance()); 
    } 
} 

 

Output 

 



 

 

Single Responsibility Principle 

The Single Responsibility Principle (SRP) is one of the five SOLID principles of object-oriented programming and design. It states that a class should have only one 

reason to change, meaning that a class should only have one job or responsibility. 

 

Violating the Single Responsibility Principle 

Let's look at an example of code that violates the Single Responsibility Principle. 

 

 

 

 

Example of a Class Violating SRP 

 Single Responsibility Principle 



public class OrderProcessor 
{ 
    public void ProcessOrder(Order order) 
    { 
        // Validate order 
        if (order.IsValid) 
        { 
            // Save order to database 
            SaveOrderToDatabase(order); 
 
            // Send confirmation email 
            SendConfirmationEmail(order); 
        } 
    } 
 
    private void SaveOrderToDatabase(Order order) 
    { 
        // Code to save order to the database 
        Console.WriteLine("Order saved to database."); 
    } 
 
    private void SendConfirmationEmail(Order order) 
    { 
        // Code to send confirmation email 
        Console.WriteLine("Confirmation email sent."); 
    } 
} 
 

In this example, the OrderProcessor class has multiple responsibilities: 

• validating the order(validation logic). 

• Saving the order to the database. 

• Sending a confirmation email. 

 



Problems with Violating SRP 

1. Harder to Maintain - Changes in the email sending process or database saving process will require changes to the OrderProcessor class. 

2. Difficult to Test - Testing the OrderProcessor class will be more complex because it involves testing multiple responsibilities at once. 

3. Reduced Reusability - The code for sending emails and saving to the database cannot be reused easily in other parts of the application. 

Refactoring to Adhere to SRP 

To adhere to the Single Responsibility Principle, we should refactor the code so that each class has only one responsibility. The below code define the refactor of 

above violating code. 

Example 

public interface IOrderRepository 
{ 
    void SaveOrder(Order order); 
} 
 
public class OrderRepository : IOrderRepository 
{ 
    public void SaveOrder(Order order) 
    { 
        // Code to save order to the database 
        Console.WriteLine("Order saved to database."); 
    } 
} 
public interface IEmailService 
{ 
    void SendEmail(Order order); 
} 
public class EmailService : IEmailService 
{ 
    public void SendEmail(Order order) 
    { 
        // Code to send confirmation email 
        Console.WriteLine("Confirmation email sent."); 
    } 



} 
public class OrderProcessor 
{ 
    private readonly IOrderRepository _orderRepository; 
    private readonly IEmailService _emailService; 
    public OrderProcessor(IOrderRepository orderRepository, IEmailService emailService) 
    { 
        _orderRepository = orderRepository; 
        _emailService = emailService; 
    } 
    public void ProcessOrder(Order order) 
    { 
        // Validate order 
        if (order.IsValid) 
        { 
            // Save order to database 
            _orderRepository.SaveOrder(order); 
            // Send confirmation email 
            _emailService.SendEmail(order); 
        } 
    } 
} 
 

Single Responsibility Principle Benefits 

The SRP has many benefits to improve code complexity and maintenance. Some benefits of SRP are following, 

1. Reduction in complexity of a code - A code is based on its 

functionality. A method holds logic for a single functionality or task. So, 

it reduces the code complexity. 

2. Increased readability, extensibility, and maintenance - As each 

method has a single functionality so it is easy to read and maintain. 

3. Reusability and Reduced Error -  As code separates based functionality 

so if the same functionality uses somewhere else in an application 

then don’t write it again. 

4. Better Testability- In the maintenance, when a functionality changes 

then we don’t need to test the entire model. 

5. Reduced Coupling - It reduced the dependency code. A method’s code 

doesn’t depend on other methods.

 



SRP with Multiple Methods 

a class adhering to the Single Responsibility Principle (SRP) which have multiple methods. The key is that all the methods should contribute to fulfilling the single 

responsibility or purpose of that class. Each method within the class should perform a task that supports the class's main responsibility. 

Example of SRP with Multiple Methods 

Let's consider an example where we have a ReportGenerator class responsible for generating reports. This class can have multiple methods, each performing a 

specific part of the report generation process, but all contributing to the single responsibility of generating a report. 

public class ReportGenerator 
{ 
    public void GenerateReport() 
    { 
        string data = FetchData(); 
        string report = FormatReport(data); 
        SaveReport(report); 
    } 
    private string FetchData() 
    {         
        Console.WriteLine("Data fetched."); 
        return "Sample Data"; 
    } 
    private string FormatReport(string data) 
    { 
        // Code to format the report 
        Console.WriteLine("Report formatted."); 
        return $"Formatted Report: {data}"; 
    } 
    private void SaveReport(string report) 
    { 
        // Code to save the report 
        Console.WriteLine("Report saved."); 
    } 

} 
class Program 
{ 
    static void Main() 
    { 
        ReportGenerator reportGenerator = new 
ReportGenerator(); 
        reportGenerator.GenerateReport(); 
    } 
} 
Explanation 

GenerateReport Method - This is the main method responsible for generating 

the report. It coordinates the overall process by calling other private methods. 

FetchData Method - Responsible for fetching data needed for the report. 

FormatReport Method - Responsible for formatting the fetched data into a 

report. 

SaveReport Method - Responsible for saving the formatted report. 

Each method contributes to the single responsibility of the ReportGenerator 

class, which is to generate a report.

 

 



 

 

A controller action method in ASP.NET MVC or ASP.NET Core can return various types of results based on the requirement. Below are the common 

return types with examples and full code. 

 

 

 

MVC- Action Method Return Types 



Here are the names of the return types for a controller action method in ASP.NET MVC or Core. 

1. ViewResult 

2. PartialViewResult 

3. JsonResult 

4. ContentResult 

5. FileResult 

6. RedirectResult 

7. RedirectToActionResult 

8. NotFoundResult 

9. BadRequestResult 

10. StatusCodeResult 

11. EmptyResult 

1. ViewResult 

This is used to return a view to the user. 

public IActionResult Index() 
{ 
    return View(); // Returns the default view associated 
with this action. 
} 

2. PartialViewResult 

Returns a partial view, often used for rendering parts of a web page. 

public IActionResult LoadPartial() 
{ 
    return PartialView("_PartialView"); // Returns a partial 
view named "_PartialView". 
} 

3. JsonResult 

Returns JSON data, typically used in APIs or AJAX requests. 

public IActionResult GetJsonData() 
{ 
    var data = new { Name = "John Doe", Age = 30 }; 
    return Json(data); // Returns JSON-encoded data. 
} 

4. ContentResult 

Returns plain text or any string content. 

public IActionResult GetText() 
{ 
    return Content("This is plain text."); // Returns plain 
text content. 
} 

5. FileResult 

Returns a file for download or display. 

public IActionResult DownloadFile() 
{ 
    var fileBytes = 
System.IO.File.ReadAllBytes("example.pdf"); 
    return File(fileBytes, "application/pdf", 
"example.pdf"); // Returns a file for download. 



} 

6. RedirectResult 

Redirects to a specific URL. 

public IActionResult RedirectToGoogle() 
{ 
    return Redirect("https://www.google.com"); // Redirects 
to Google. 
} 

7. RedirectToActionResult 

Redirects to another action method. 

public IActionResult RedirectToAbout() 
{ 
    return RedirectToAction("About", "Home"); // Redirects 
to the About action of the Home controller. 
} 

8. NotFoundResult 

Returns a 404 Not Found status. 

public IActionResult PageNotFound() 
{ 
    return NotFound(); // Returns a 404 status. 
} 
 
 

 
 

9. BadRequestResult 

Returns a 400 Bad Request status. 

public IActionResult InvalidRequest() 
{ 
    return BadRequest("Invalid request."); // Returns a 400 
status with a message. 
} 

10. StatusCodeResult 

Returns a specific HTTP status code. 

public IActionResult CustomStatus() 
{ 
    return StatusCode(500); // Returns a 500 Internal Server 
Error status. 
} 

11. EmptyResult 

Represents no result (does nothing). 

public IActionResult DoNothing() 
{ 
    return new EmptyResult(); // Does nothing. 
} 

  



 

 

 

In ASP.NET MVC, ViewData, ViewBag, and TempData are used to pass 

data between controllers and views, but they each have their unique 

characteristics. 

 

 

ViewData 

1. It's a dictionary object that is derived from ViewDataDictionary. 

2. Data is accessed using string keys. 

3. It's useful for passing data from the controller to the view. 

4. Data is available only during the current request. 

 
public ActionResult Index() 
{ 
    ViewData["Message"] = "Hello from ViewData!"; 
    return View(); 
} 
 
//View 
 
<p>@ViewData["Message"]</p> 

ViewBag 

1. It's a dynamic object that uses the ExpandoObject under the 

hood. 

2. Easier syntax compared to ViewData as it doesn't require 

casting. 

3. Also used for passing data from the controller to the view. 

4. Data is available only during the current request. 

 
public ActionResult Index() 
{ 
    ViewBag.Message = "Hello from ViewBag!"; 
    return View(); 
} 
 
//View 
<p>@ViewBag.Message</p> 

 

 

 

MVC-ViewData vs ViewBag vs TempData 



TempData 

1. It's a dictionary object derived from TempDataDictionary. 

2. Stores data that is needed for more than a single request, useful 

for redirection. 

3. Data persists until it is read, or the session expires. 

4. Data is accessed using string keys. 

 
public ActionResult Index() 
{ 
    TempData["Message"] = "Hello from TempData!"; 
    return RedirectToAction("NextAction"); 
} 
 
public ActionResult NextAction() 
{ 
    string message = TempData["Message"] as string; 
    ViewBag.Message = message; 
    return View(); 
} 
 
//View 
 
<p>@ViewBag.Message</p> 

Here's a comparison of ViewData, ViewBag, and TempData in tabular 

form. 

Feature ViewData ViewBag TempData 

Type Dictionary (ViewDataDictionary) Dynamic (ExpandoObject) Dictionary (TempDataDictionary) 

Syntax ViewData["Key"] ViewBag.Key TempData["Key"] 

Casting Requires casting No casting required Requires casting 

Scope Current request Current request Subsequent requests (short-lived) 

Usage Pass data from controller to view Pass data from controller to view Pass data between controller actions 

Persistence 
Data is lost after the request is 

complete 

Data is lost after the request is 

complete 

Data persists until read or session 

expires 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

In the context of the ASP.NET MVC framework, filters are used to execute 

code before or after specific stages in the request processing pipeline. 

Filters can handle cross-cutting concerns, such as authentication, 

authorization, logging, and error handling, across multiple actions or 

controllers. 

 

 

 

There are several types of filters in MVC, each serving a different 

purpose. 

1. Authorization Filter 

Used to perform authentication and authorization before an action 

method is executed. It ensures that the user is authorized to access a 

particular action or controller. 

Executed At - Before the Action Filter and Action Method. 

Example - AuthorizeAttribute 

You can use this filter to restrict access to certain users or roles. 

Authorization Filter Example 

Let's say you have an admin panel that only authorized users should 

access. 

[Authorize(Roles = "Admin")] 
public class AdminController : Controller 
{ 
    public ActionResult Index() 
    { 
        return View(); 
    } 
} 

 

 MVC- Action Method Return Types 



Output 

• If a user with the Admin role accesses the Index action, they see the admin panel view. 

• If a user without the Admin role tries to access it, they are redirected to the login page or shown an unauthorized message. 

2. Action Filter 

Used to perform logic before and after an action method executes. Commonly used for logging, validation, or modifying data. 

Executed At - Before and after the execution of an action method. 

Example - ActionFilterAttribute 

Action Filter Example 

Suppose you want to log the execution time of each action method. 

public class LogExecutionTimeAttribute : ActionFilterAttribute 
{ 
    private Stopwatch stopwatch; 
    public override void OnActionExecuting(ActionExecutingContext filterContext) 
    { 
        stopwatch = Stopwatch.StartNew(); 
    } 
    public override void OnActionExecuted(ActionExecutedContext filterContext) 
    { 
        stopwatch.Stop(); 
        var executionTime = stopwatch.ElapsedMilliseconds; 
        filterContext.HttpContext.Response.Headers.Add("X-Execution-Time", executionTime.ToString()); 
    } 
} 
[LogExecutionTime] 
public class HomeController : Controller 
{ 
    public ActionResult Index() 



    { 
        return View(); 
    } 
} 

Output 

• The response header will include the execution time of the Index action. 

• Example - X-Execution-Time: 15 

3. Result Filter 

Used to perform logic before and after a result (like a ViewResult or JsonResult) is executed. Useful for operations like modifying the response or adding 

headers. 

Executed At - Before and after the ActionResult executes. 

Example - OutputCacheAttribute (for caching responses) 

Result Filter Example 

Let's say you want to add a custom header to the response of an action. 

public class AddCustomHeaderAttribute : ResultFilterAttribute 
{ 
    public override void OnResultExecuting(ResultExecutingContext filterContext) 
    { 
        filterContext.HttpContext.Response.Headers.Add("X-Custom-Header", "This is a custom header"); 
    } 
} 
 
[AddCustomHeader] 
public class HomeController : Controller 
{ 
    public ActionResult Index() 



    { 
        return View(); 
    } 
} 

Output 

• The response header will include the custom header. 

• Example - X-Custom-Header: This is a custom header 

4. Exception Filter 

Used to handle unhandled exceptions that occur in controllers or actions. It is commonly used to log errors or show custom error pages. 

Executed At - Only when an exception occurs during the execution of an action method or result. 

Example - HandleErrorAttribute 

Exception Filter Example - Suppose you want to log exceptions globally in your application. 

public class GlobalExceptionFilter : IExceptionFilter 
{ 
    public void OnException(ExceptionContext filterContext) 
    { 
        var exception = filterContext.Exception; 
        filterContext.Result = new RedirectToRouteResult( 
            new System.Web.Routing.RouteValueDictionary 
            { 
                { "controller", "Error" }, 
                { "action", "Index" } 
            }); 
        filterContext.ExceptionHandled = true; 
    } 
} 

public static void 
RegisterGlobalFilters(GlobalFilterCollection filters) 
{ 
    filters.Add(new GlobalExceptionFilter()); 
} 

Output 

• If an exception occurs, the user is redirected to the Error 

controller's Index action. 

• The exception details are logged. 

 

 



 

 

 

your application to specify which domains are permitted to access its resources. By default, web browsers enforce the same-origin policy, which restricts web pages 
from making requests to a domain different from the one that served the web page. CORS is used to relax this restriction and allow cross-origin requests in a controlled 
and secure manner. 

Understanding CORS 

When a web page on Domain A tries to access resources (like APIs) from Domain B, the browser checks the CORS policy set by Domain B. CORS is implemented by 
adding specific HTTP headers to the server response. 

Why CORS 

Here is why CORS is important. 

1. To Enable Cross-Origin Requests 

• Browsers enforce a security policy called Same-Origin Policy, which restricts web pages from making requests to a domain different from the one that 
served the web page. 

• CORS provides a way to bypass this restriction by explicitly allowing certain cross-origin requests. 

2. To Improve API Usability 

• If your .NET application exposes a Web API, it is likely that external clients (like front-end applications hosted on different domains) will need to consume the 
API. 

• CORS enables these external applications to interact with your API securely. 

3. To Enhance Security 

• By configuring CORS, you can control which domains, HTTP methods, and headers are permitted to interact with your resources. 
• This reduces the risk of unauthorized access and ensures only trusted clients are allowed. 

 

 

 

Cors in .NetCore 



4. To Support Modern Web Applications 

• Single Page Applications (SPAs), mobile apps, and third-party integrations often require access to APIs hosted on different domains. 
• CORS makes it possible for these applications to function seamlessly. 

5. To Prevent Errors in Development 

• Without CORS, requests to your API from a different origin would be blocked by the browser, resulting in errors like. 

Access to XMLHttpRequest at 'http://example.com/api' from origin 'http://another-origin.com' has been blocked by CORS policy. 

Same Origin 

Two URLs have the same origin if they have identical schemes, hosts, and ports. These two URLs have the same origin: 

https://example.com/foo.html 
https://example.com/bar.html 

Different Origins 

These URLs have different origins than the previous two URLs. 

https://example.net: Different domain 

https://contoso.example.com/foo.html: Different subdomain 

http://example.com/foo.html: Different scheme 

https://example.com:9000/foo.html: Different port 

 

https://example.com/bar.html


What Happens Without CORS? 

• Browsers block cross-origin requests, resulting in errors like. 
 
Access to XMLHttpRequest at '...' from origin '...' has been blocked by CORS policy. 
 

• Your application will fail to function if it relies on APIs hosted on a different origin. 

When Should You Use CORS? 

1. Cross-Origin Frontend-Backend Communication - Many applications have separate frontend and backend services running on different domains 
 
(e.g., frontend on https://app.example.com and backend API on https://api.example.com). 
 
Without CORS, the browser blocks requests between these domains. CORS enables these applications to work seamlessly. 

2. Third-Party API Consumers - When your API is used by external clients. 
3. Microservices Architecture - When services in a microservices setup communicate across origins. 
4. Content Delivery Networks (CDN) - When using CDNs to serve resources like images or scripts from different origins. 

Steps to Enable CORS in .NET Core 

Here's how you can enable and configure CORS in a .NET Core application. 

 

https://app.example.com/
https://api.example.com/


After installed Cors. We can check. 

 



1. Install Required NuGet Package 

If you are using .NET Core 2.x, ensure you have the required package: 

2. Register CORS in Program.cs File in .NetCore 7 

You need to add and configure CORS middleware in the service container. 

builder.Services.AddAuthorization(); 
 
builder.Services.AddScoped<IMaterialService, MaterialService>(); 
builder.Services.AddSwaggerGen(); 
 
// Adding CORS services with a policy 
builder.Services.AddCors(options => 
{ 
    options.AddPolicy("AllowSpecificOrigins", builder => 
    { 
        builder.WithOrigins("https://example.com", "https://anotherdomain.com") // Allow specific domains 
               .AllowAnyHeader() // Allow any header 
               .AllowAnyMethod(); // Allow any HTTP method (GET, POST, etc.) 
    }); 
 
    options.AddPolicy("AllowAll", builder => 
    { 
        builder.AllowAnyOrigin() // Allow all domains 
               .AllowAnyHeader() 
               .AllowAnyMethod(); 
    }); 
}); 
builder.Services.AddControllersWithViews(); 

Use the CORS middleware in Program.cs file 



app.UseRouting(); 
// Enable CORS globally or for specific endpoints 
app.UseCors("AllowSpecificOrigins"); 
app.UseAuthentication(); 

3. Apply CORS to Specific Controllers or Endpoints 

You can apply the CORS policy to specific controllers or actions using the [EnableCors] attribute. 

a. For a specific controller 

[EnableCors("AllowSpecificOrigins")] 
[ApiController] 
[Route("api/[controller]")] 
public class SampleController : ControllerBase 
{ 
    [HttpGet] 
    public IActionResult Get() 
    { 
        return Ok("CORS is enabled for specific origins."); 
    } 
} 

b. Disable CORS for a specific action 

[DisableCors] 
[HttpGet("no-cors")] 
public IActionResult NoCors() 
{ 
    return Ok("CORS is disabled for this action."); 
} 

 



Testing CORS 

Once you've set up CORS, you can test it by making requests to your API from a different domain and verifying that the responses are successfully received. 

CORS Options 

The CorsPolicyBuilder provides several methods to configure CORS behavior: 

1. Allow Specific Origins 
 
builder.WithOrigins("https://example.com"); 
 

2. Allow All Origins 
 
builder.AllowAnyOrigin(); 
 

3. Allow Specific HTTP Methods 
 
builder.WithMethods("GET", "POST"); 
 

4. Allow Specific Headers 
 
builder.WithHeaders("Content-Type", "Authorization"); 
 

5. Allow All Headers 
 
builder.AllowAnyHeader(); 
 

6. Support Credentials - If your API requires cookies or other credentials 
to be included in cross-origin requests. 
 
builder.AllowCredentials(); 

Debugging CORS Issues 

1. Check Response Headers - Ensure the Access-Control-Allow-Origin header is returned by the server. 
2. Handle Credentials Properly - Use AllowCredentials if necessary. 
3. Configure Allowed Methods and Headers - Ensure your API explicitly allows the methods and headers being used by the client. 
4. Browser Console - Look for CORS errors in the browser developer tools. 

 

 

 

 



 

 

Design patterns are typical solutions to common problems in software design. Each pattern is like a blueprint that you can customize to solve a particular design 
problem in your code. 

Design Patterns Introduction 

Design Pattern are well-established solutions to common software design problems that developers encounter while building applications. They are not specific pieces 
of code but rather general reusable templates that can be adapted to solve specific problems in various contexts. Design Patterns help in designing flexible, scalable, 
and maintainable software. 

Key Benefits of Design Patterns 

1. Reusability - Patterns provide proven solutions that can be reused in different projects, reducing the need to reinvent the wheel. 
2. Best Practices - They encapsulate best practices and expertise, guiding developers toward effective design choices. 
3. Communication - Patterns offer a shared vocabulary among developers, making it easier to communicate design ideas and solutions. 
4. Maintainability - By promoting a structured approach to problem-solving, patterns help create systems that are easier to maintain and extend. 
5. Scalability - They aid in designing systems that can grow and evolve without significant refactoring. 
6. Flexibility - Patterns encourage the design of systems that are adaptable to changes in requirements or technology. 

Problems Solved by Design Patterns 

1. Duplication of Code - By using patterns like Singleton or Factory, you can avoid repetitive code and centralize logic that might otherwise be scattered. 
2. Complexity Management - Patterns like Facade and Mediator simplify complex systems by providing a unified interface or managing communication 

between components. 
3. Decoupling Components - Patterns like Dependency Injection, Adapter, and Strategy help in reducing the dependency between classes, making the system 

more modular. 
4. Flexibility and Extensibility - Patterns such as Decorator and Observer allow extending the functionality of classes dynamically without modifying existing 

code. 
5. Maintainability - By following patterns, developers create a more understandable and consistent codebase, which is easier to maintain and evolve. 

 

 

Design Patterns Introduction 



Common Types of Design Patterns 

Design Patterns are broadly categorized into three types. 

 
 
 

1. Creational Patterns - These patterns deal with object creation 
mechanisms, trying to create objects in a manner suitable for the 
situation. They help manage the creation process, making it more 
adaptable and efficient. 

Examples - Singleton, Factory Method, Abstract Factory, Builder, 
Prototype 
 

2. Structural Patterns - These patterns deal with the composition of 
classes or objects. They help in forming large structures by composing 
objects and classes in a way that results in more flexible and efficient 
design. 

Examples - Adapter, Bridge, Composite, Decorator, Facade, Flyweight, 
Proxy 
 

3. Behavioral Patterns - These patterns deal with communication 
between objects and how responsibilities are distributed among them. 
They focus on improving communication and assigning clear 
responsibilities to objects. 

Examples -Chain of Responsibility, Command, Interpreter, Iterator, 
Mediator, Memento, Observer, State, Strategy, Template Method, 
Visitor 

                             

 

 

 

 



 

 

The Singleton pattern ensures that a class has only one instance and provides a global point of access to that instance. Let's explore the potential problems that arise 
if you don't use these design patterns in real-world scenarios. 

1. Singleton Pattern 

The Singleton pattern is a design pattern that ensures a class has only one instance and provides a global point of access to that instance. If we do multiple requests 
to the class, will get a single copy of an instance. The Singleton pattern ensures that a class has only one instance and provides a global point of access to that instance. 

 

Advantages of the Singleton Pattern 

1. Controlled Access - Singleton ensures that there is controlled access to the instance, preventing accidental multiple instances. 
2. Reduced Memory Overhead - Since only one instance is created, it saves memory. 
3. Consistency Across the System - Having a single instance ensures consistent behavior across different parts of the application. 

When to Use the Singleton Pattern 

• Resource Management - When managing resources like file handles, database connections, or logging, where only one instance should be active. 
• Configuration Settings - When an application has global configuration settings, it’s useful to have a single instance that manages these settings. 
• Cross-Cutting Concerns - For concerns like logging or caching that are used across various parts of an application, Singleton ensures consistent behavior and 

state. 

 

 

C# - Singleton Design Pattern 



Problems - A logging system without Singleton 

Multiple Instances - Without a Singleton, multiple instances of the logging class could be created. 
 
This could lead to following points. 

• Inconsistent Logging - Different parts of the application might log to different files or outputs, making it difficult to track issues. 
• Resource Contention - Multiple instances could try to write to the same log file simultaneously, causing file access conflicts or corrupted log files. 
• Memory Waste - Creating multiple logger instances would consume unnecessary memory. 

A logging system with Singleton 

You want to ensure that there's only one instance of the logger class that writes logs to a file. Multiple instances could lead to file access conflicts or inconsistent 
logging. Ensures that only one instance of the Logger class exists, preventing issues related to file access or inconsistent logging. 

Example 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
 
namespace ConsoleApp2 
{ 
 
    public class Singleton 
    { 
        private static Singleton _instance; 
 
        // Private constructor ensures that the class cannot be instantiated from outside 
        private Singleton() { } 
 
        public static Singleton Instance 
        { 



            get 
            { 
                if (_instance == null) 
                { 
                    _instance = new Singleton(); 
                } 
                return _instance; 
            } 
        } 
 
        public void DoSomething() 
        { 
            Console.WriteLine("Singleton instance method called."); 
        } 
    } 
    internal class Program 
    { 
        static void Main(string[] args) 
        { 
            // Accessing the Logger instance 
            Singleton logger = Singleton.Instance; 
 
            // Usage 
            logger.DoSomething(); 
        } 
    } 
} 

Example Explanation 

Consider the Logger class from your previous code. 

• Private Constructor -The constructor is private, so no one can create an instance of Logger directly using new Logger(). 
• Static Instance - A static field _instance holds the single instance of the Logger class. 



• Thread-Safe Access - The Instance property uses a lock mechanism to ensure that only one thread can create the instance in a multithreaded environment. 
• Global Access Point - Logger.Instance provides a global access point to the single Logger instance. 

Singleton Instance Creation 

Singleton logger = Singleton.Instance; 
Singleton logger1 = Singleton.Instance; 

1. Here, Singleton.Instance is used to access the single, globally shared instance of the Singleton class. 
2. Both logger and logger1 are references to the same instance of the Singleton class. 
3. The Instance property typically includes logic to check if an instance already exists. If it doesn't, it creates one; if it does, it returns the existing instance. 

Singleton Instance Creation 

logger.DoSomething(); 
logger1.DoSomething(); 

1. The DoSomething() method is called on both logger and logger1. 
2. Since logger and logger1 refer to the same instance, calling DoSomething() on either will affect the same instance. 

Lock Mechanism 

Ensures thread safety, making sure that only one instance is created, even in multithreaded scenarios. 

using System; 
 
public sealed class Singleton 
{ 
    private static Singleton _instance = null; 
    private static readonly object _lock = new object(); 
 
    // Private constructor prevents instantiation from outside 
    private Singleton()  
    { 
        Console.WriteLine("Singleton instance created"); 
    } 
 



    // Public static method to provide access to the single instance 
    public static Singleton Instance 
    { 
        get 
        { 
            lock (_lock)  // Ensures thread safety 
            { 
                if (_instance == null) 
                { 
                    _instance = new Singleton(); 
                } 
            } 
            return _instance; 
        } 
    } 
 
    // Example method for the Singleton class 
    public void DoSomething() 
    { 
        Console.WriteLine("Singleton is working!"); 
    } 
} 
 
class Program 
{ 
    static void Main(string[] args) 
    { 
        // Try to create instances 
        Singleton s1 = Singleton.Instance; 
        Singleton s2 = Singleton.Instance; 
 
        // Both instances should be the same 
        if (s1 == s2) 
        { 
            Console.WriteLine("Both instances are the same."); 



        } 
 
        s1.DoSomething(); 
    } 
} 

Above Code Explanation 

• Private Constructor - Prevents external instantiation of the class. 
• Static Instance Field - Holds the single instance of the class. 
• Lock Mechanism - Ensures thread safety, making sure that only one instance is created, even in multithreaded scenarios. 
• Instance Property - Provides global access to the instance 

Real-World Example - Singleton Pattern as a Government 

The government of a country perfectly fits the Singleton pattern, as there can only be one official government. It is a global point of access that identifies the group 
of people in charge. 

Government Class (Singleton) 

• The Government class is a singleton. It contains a private static field _instance and a static method Instance to provide access to this single instance. 
• The constructor is private to ensure that no other part of the program can create additional government instances. 

Thread Safety 

• A lock object ensures that only one thread can create the government instance at a time, preventing multiple instances from being created in a multi-
threaded environment. 

Requests from Citizens and Agencies 

• Citizen and Agency classes simulate entities that interact with the government by calling the ManageCountry() method. 
• Both send different requests, and those requests are processed by the same government instance. 

Global Access 



• The main program demonstrates that both Citizen A and Agency B are interacting with the same government instance, fulfilling the Singleton pattern. 
using System; 
 
public sealed class Government 
{ 
    // Static variable to hold the single instance of the Government class 
    private static Government _instance = null; 
     
    // Lock object for thread safety 
    private static readonly object _lock = new object(); 
     
    // Private constructor ensures no other class can instantiate it 
    private Government() 
    { 
        Console.WriteLine("Government has been created."); 
    } 
 
    // Public static method to provide global access to the instance 
    public static Government Instance 
    { 
        get 
        { 
            lock (_lock) 
            { 
                // Create a new instance only if it doesn't exist 
                if (_instance == null) 
                { 
                    _instance = new Government(); 
                } 
            } 
            return _instance; 
        } 
    } 
 
    // Method to simulate managing country policies 



    public void ManageCountry(string request) 
    { 
        Console.WriteLine($"Processing request: {request}"); 
    } 
} 
 
// Simulating citizens and agencies sending requests to the Government 
public class Citizen 
{ 
    public void RequestService(string request) 
    { 
        Console.WriteLine("Citizen is sending request..."); 
        Government.Instance.ManageCountry(request); 
    } 
} 
 
public class Agency 
{ 
    public void RequestPolicyChange(string request) 
    { 
        Console.WriteLine("Agency is sending request..."); 
        Government.Instance.ManageCountry(request); 
    } 
} 
 
// Main program to demonstrate the Singleton pattern 
class Program 
{ 
    static void Main(string[] args) 
    { 
        // Simulating citizens and agencies making requests 
        Citizen citizenA = new Citizen(); 
        citizenA.RequestService("Request for better healthcare"); 
 
        Agency agencyB = new Agency(); 



        agencyB.RequestPolicyChange("Request for tax reform"); 
 
        // Showing that both Citizen A and Agency B are using the same Government instance 
        if (Government.Instance == Government.Instance) 
        { 
            Console.WriteLine("Both Citizen A and Agency B are interacting with the same government instance."); 
        } 
    } 
} 

Output 

 
 
Application of Singleton Design Pattern 

Some real-time techniques in which the Singleton Design Pattern can be used. 

1. Proxies for Services - Invoking a Service API is a complex operation in an application, as we all know. The most extended process is creating the Service client 
to invoke the service API. If you make the Service proxy as a Singleton, your application's performance will improve. 

2. Facades - Database connections can also be created as Singletons, which improves application performance. 
3. Logs - Performing an I/O operation on a file in an application is an expensive operation. If you create your Logger as a Singleton, the I/O operation will 

perform better. A public and static method to get the reference to the new entity created by instance. 
4. Data sharing - If you have any constant or configuration values, you can store them in Singleton so other application components can read them. 
5. Caching - As we all know, retrieving data from a database takes time. You can avoid DB calls by caching your application's master and configuration in 

memory. In such cases, the Singleton class can handle caching efficiently with thread synchronization, significantly improving application performance. 



 

 

Factory Design Pattern Introduction 

The Factory Pattern is a creational design pattern that provides an interface for creating objects without specifying their exact class. The factory method encapsulates 
object creation, making it easier to manage and modify. This pattern allows for decoupling the code that uses the objects from the code that creates them. 

Advantages of the Factory Pattern 

1. Decoupling - It separates the object creation logic from the main business logic, reducing dependency and making the system more modular. 
2. Flexibility - You can introduce new classes without modifying the client code. This improves scalability and maintainability. 
3. Simplifies Code - Instead of spreading object creation logic throughout the system, it centralizes it in a factory, which makes the code more readable and 

manageable. 
4. Object Reusability - It allows for reusing existing objects when applicable, reducing memory consumption. 
5. Promotes Interface-Based Programming - Encourages the use of interfaces or abstract classes, improving code extensibility. 

When to Use the Factory Pattern 

1. Complex Object Creation - When creating objects is complex, involves multiple steps, or requires specific configuration. 
2. Switching Between Related Objects - When a system needs to switch between different related classes dynamically. 
3. Code that Depends on Interfaces - When working with abstractions (interfaces or abstract classes) and the specific implementation should be hidden. 
4. Needing Centralized Object Management - When object creation needs to be managed and controlled from a central point, like in dependency injection 

scenarios. 

Problems - A document system without FactoryScenario: A common real-world example of the Factory Design Pattern is the creation of different types of documents 
in a document processing application. Consider a scenario where you have a document editor application that can create different types of documents, such as 
Resume, Report, and Letter. 

If a factory pattern is not used in a document generation system, several problems can arise. 

Problems 

 

 

Factory Design Pattern 



• Tight Coupling - Without the Factory Method pattern, the code that creates documents would need to know the exact classes (e.g. Resume, Report). This 
makes the system tightly coupled and harder to extend. 

• Difficulty in Adding New Document Types - If a new document type is needed (e.g., Excel), you would have to modify the existing code to accommodate the 
new class. This violates the Open/Closed Principle (OCP), which states that classes should be open for extension but closed for modification. 

• Code Duplication - The code for creating different document types would likely be duplicated in multiple places, leading to maintenance issues. 

A Creation of Different Types of Documents System with Factory Pattern 

A common real-world example of the Factory Design Pattern is the creation of different types of documents in a document processing application. Consider a scenario 
where you have a document editor application that can create different types of documents, such as Resume, Report, and Letter. 

A diagram can help clarify the structure and interactions in the Factory Design Pattern. Here’s a visual representation of the Factory Pattern for creating different 
types of documents. 

 

How It Works 

1. Client Code - Requests a document creation by using the factory interface (IDocumentFactory). 
2. Factory Interface -The client interacts with the factory interface, requesting a document. 



3. Concrete Factory - The specific factory (e.g., PdfDocumentFactory) creates and returns an instance of the corresponding document type (e.g., PdfDocument). 
4. Document Creation - The client interacts with the IDocument interface to use the document, without needing to know the details of the document's creation. 

Example 

Here’s the entire code example using the Factory Pattern in C#. 

// Product interface 
public interface IDocument 
{ 
    void Create(); 
} 
 
// Concrete Products 
public class Resume : IDocument 
{ 
    public void Create() 
    { 
        Console.WriteLine("Creating a Resume"); 
    } 
} 
 
public class Report : IDocument 
{ 
    public void Create() 
    { 
        Console.WriteLine("Creating a Report"); 
    } 
} 
 
public class Letter : IDocument 
{ 
    public void Create() 
    { 
        Console.WriteLine("Creating a Letter"); 



    } 
} 
 
// Factory interface 
public interface IDocumentFactory 
{ 
    IDocument CreateDocument(); 
} 
 
// Concrete Factories 
public class ResumeFactory : IDocumentFactory 
{ 
    public IDocument CreateDocument() 
    { 
        return new Resume(); 
    } 
} 
 
public class ReportFactory : IDocumentFactory 
{ 
    public IDocument CreateDocument() 
    { 
        return new Report(); 
    } 
} 
 
public class LetterFactory : IDocumentFactory 
{ 
    public IDocument CreateDocument() 
    { 
        return new Letter(); 
    } 
} 
 
class Program 



{ 
    static void Main() 
    { 
        // Client code using the Factory pattern 
        IDocumentFactory resumeFactory = new ResumeFactory(); 
        IDocument resume = resumeFactory.CreateDocument(); 
        resume.Create(); // Output: Creating a Resume 
 
        IDocumentFactory reportFactory = new ReportFactory(); 
        IDocument report = reportFactory.CreateDocument(); 
        report.Create(); // Output: Creating a Report 
 
        IDocumentFactory letterFactory = new LetterFactory(); 
        IDocument letter = letterFactory.CreateDocument(); 
        letter.Create(); // Output: Creating a Letter 
    } 
} 

Output 

 

Advantages of the Factory Pattern in this Example. 

• Decoupling - The client code is decoupled from the specific implementations (Resume, Report, Letter). It only depends on 
the IDocumentFactory and IDocument interfaces. 

• Easy to Extend - If a new document type (e.g., Invoice) needs to be added, you can simply create a new InvoiceFactory and Invoice class without modifying 
any existing code. 

• Scalability - The system can easily scale with new types of documents without changing the core logic. 



Real-World Example - Transport System 

A transport booking system allows users to book various modes of transportation, such as Car, Bus, or Bicycle. Each type of transport has different characteristics and 
booking procedures, but the system should be able to handle them all through a unified interface. Using the Factory Pattern, the transport system can dynamically 
create and manage different vehicle objects. 

Example 

// Transport interface 
public interface ITransport 
{ 
    void Book(); 
} 
 
// Concrete Transport Classes 
public class Car : ITransport 
{ 
    public void Book() 
    { 
        Console.WriteLine("Car has been booked."); 
    } 
} 
 
public class Bus : ITransport 
{ 
    public void Book() 
    { 
        Console.WriteLine("Bus has been booked."); 
    } 
} 
 
public class Bicycle : ITransport 
{ 
    public void Book() 

    { 
        Console.WriteLine("Bicycle has been booked."); 
    } 
} 
 
// Factory interface 
public interface ITransportFactory 
{ 
    ITransport CreateTransport(); 
} 
 
// Concrete Factories 
public class CarFactory : ITransportFactory 
{ 
    public ITransport CreateTransport() 
    { 
        return new Car(); 
    } 
} 
 
public class BusFactory : ITransportFactory 
{ 
    public ITransport CreateTransport() 
    { 
        return new Bus(); 
    } 



} 
 
public class BicycleFactory : ITransportFactory 
{ 
    public ITransport CreateTransport() 
    { 
        return new Bicycle(); 
    } 
} 
 
// Client code 
class Program 
{ 
    static void Main(string[] args) 
    { 
        // Simulating user input for transport selection 
        string transportType = "Bus"; // Can be "Car", "Bus", or "Bicycle" 
        ITransportFactory factory = GetTransportFactory(transportType); 
 
        if (factory != null) 
        { 
            ITransport transport = factory.CreateTransport(); 
            transport.Book(); // Booking the transport 

        } 
        else 
        { 
            Console.WriteLine("Invalid transport type."); 
        } 
    } 
 
    // Factory selection logic 
    public static ITransportFactory GetTransportFactory(string transportType) 
    { 
        switch (transportType) 
        { 
            case "Car": 
                return new CarFactory(); 
            case "Bus": 
                return new BusFactory(); 
            case "Bicycle": 
                return new BicycleFactory(); 
            default: 
                return null; 
        } 
    } 
} 

Output 

 

 



Advantages in a Real-World Scenario 

• Decoupling Creation Logic - The client code doesn’t need to know the specific details of how each transport type is created. It only interacts with the 
ITransportFactory and ITransport interfaces. 

• Extensibility - If new transport types (e.g., Train, Taxi, or Scooter) are introduced, you can add new factory and transport classes without changing the 
existing code. 

• Flexibility - Different transport types can be instantiated dynamically based on user input or other conditions (e.g., availability, pricing, etc.). 
• Maintenance - The code is easier to maintain because the transport creation logic is centralized in factories. Any change in the transport creation process is 

isolated from the rest of the system. 
• Reusability - The transport booking logic is reusable and can be extended to accommodate new features, such as pricing strategies, vehicle conditions, or 

booking rules. 

Applications of the Factory Design Pattern 

• GUI Frameworks - Creating platform-specific components (Windows, macOS, Linux) through a factory. 
• Database Access - Switching between different databases (e.g., MySQL, SQL Server) based on configurations. 
• Logging Libraries - Creating different types of loggers (file logger, console logger, database logger) through a factory. 
• Game Development - Creating different types of game entities (monsters, players, NPCs) dynamically based on the game state. 
• Parser Tools - Dynamically creating different types of file parsers (e.g., XML, JSON, CSV) using a factory. 

 

 

 

 

 

 

 

  

 



 

 

Angular Custom Pipe 

In this tutorials we will see how to create angular custom pipe with an example. We will understand that with the employee’s name list. suppose we have created a 
student list without prefix Mr. or Mis. before the name of the employee. In future we need to add name add Mr. Or Mis. prefixed before the name of the employee 
so we will make a custom pipe for it. 

 

In the above image we have the list of employees when we created list of employee we have not added Mr. or Mis prefix before the name. In future there is some 
change in the requirement need to add prefix before the name. T do that you can simply create a custom pipe and use it. 

Create an application 

The following command uses the Angular CLI to create a Angular application. The application name in the following example is angularcustompipe. 

ng new angularcustompipe 

 

 

Angular Custom Pipe 



Add the following code in app.component.ts 

import { Component } from '@angular/core'; 
 
@Component({ 
  selector: 'app-root', 
  templateUrl: './app.component.html', 
  styleUrls: ['./app.component.css'] 
}) 
export class AppComponent { 
  Employee: any[] = [ 
    { 
        ID: '1', Name: 'Rohatash', Gender: 'Male' 
    }, 
    { 
      ID: '2', Name: 'Rajesh', Gender: 'Male' 
    }, 
    { 
      ID: '3', Name: 'Rahul', Gender: 'Male' 
    }, 
    { 
      ID: '4', Name: 'Ritesh', Gender: 'Male' 
    }, 
    { 
      ID: '5', Name: 'Ravindar', Gender: 'Male' 
    }, 
    { 
      ID: '6', Name: 'Deepak', Gender: 'Male' 
    }, 
    { 
      ID: '7', Name: 'Manoj', Gender: 'Male' 
    }, 
    { 
      ID: '8', Name: 'Deepali', Gender: 'Female' 
    } 



]; 
} 

Add the following code in app.component.html 

<table border="1" cellpadding="0" cellspacing="0"> 
<thead> 
<tr style="background-color:blue; color:white"> 
<th>Employee ID</th> 
<th>Name</th>  
<th>Gender</th> 
 
</tr> 
</thead> 
<tbody> 
<tr *ngFor='let empobj of Employee'> 
<td>{{empobj.ID }}</td> 
<td>{{empobj.Name }}</td> 
<td>{{empobj.Gender }}</td>  
</tr> 
</tbody> 
</table> 

Now run the application. It will display list of employee. 

 



Change in Requirement 

In future there is slightly change requirement,  now they want to show the prefix which depend on the gender of the employee. So we need to add Mr. or Mis. prefix 
before the name of the employee. To do that we create a custom pipe. 

Creating Angular Custom Pipe 

The following command uses the Angular CLI to create a Angular custom pipe. The application name in the following example is nameprefix. 

ng g pipe nameprefix 

when you type ng g pipe nameprefix and press enter, it create automatically two files which are shown in below image within the app folder. it also update the 
app.module.ts file. 

 

We will see created file in the project file structure. 

 



Now, open nameprefix.pipe.ts file and then copy and paste the following code in it. 

import { Pipe, PipeTransform } from '@angular/core'; 
 
@Pipe({ 
  name: 'nameprefix' 
}) 
export class NameprefixPipe implements PipeTransform { 
 
  transform(name: string, gender: string): string { 
    if (gender.toLowerCase() == "male") 
        return "Mr. " + name; 
    else 
        return "Mis. " + name; 
  } 
 
} 

Registering the Custom Pipe in Application Module file 

When we create pipe by default it will register in app.module.ts file 

import { NgModule } from '@angular/core'; 
import { BrowserModule } from '@angular/platform-browser'; 
 
import { AppComponent } from './app.component'; 
import { NameprefixPipe } from './nameprefix.pipe'; 
 
@NgModule({ 
  declarations: [ 
    AppComponent, 
    NameprefixPipe 
  ], 
  imports: [ 
    BrowserModule 



  ], 
  providers: [], 
  bootstrap: [AppComponent] 
}) 
export class AppModule { } 

Now in the final step we add the create pipe in app.component.html file 

<table border="1" cellpadding="0" cellspacing="0"> 
<thead> 
<tr style="background-color:blue; color:white"> 
<th>Employee ID</th> 
<th>Name</th>  
<th>Gender</th> 
 
</tr> 
</thead> 
<tbody> 
<tr *ngFor='let empobj of Employee'> 
<td>{{empobj.ID }}</td> 
<td>{{empobj.Name| nameprefix:empobj.Gender}}</td> 
<td>{{empobj.Gender }}</td>  
</tr> 
</tbody> 
</table> 

Now run the application and validate with prefix. It will work fine. 

 



 

 

Both are types of Observables that can emit data to multiple subscribers, but they differ in how they store and emit the data. 

1. Subject 

A Subject is both an Observable and an Observer. 
It does not store any previous value — it only emits new values to active subscribers. 

Key Points 

• Does not have an initial value. 
• New subscribers don’t get previous values — only future emissions. 
• Used when you want to broadcast data to multiple subscribers. 

Example — Subject 

import { Subject } from 'rxjs'; 
const subject = new Subject<string>(); 
subject.subscribe(val => console.log('Subscriber 1:', val)); 
subject.next('Hello'); 
subject.next('Angular'); 
subject.subscribe(val => console.log('Subscriber 2:', val)); 
subject.next('RxJS'); 
 
 
Output 
 
Subscriber 1: Hello 
Subscriber 1: Angular 
Subscriber 1: RxJS 
Subscriber 2: RxJS 

 Subject vs BehaviorSubject in RxJS 



Notice: 

“Subscriber 2” missed the previous values (Hello, Angular). 
It only received RxJS — the value emitted after it subscribed. 

2. BehaviorSubject 

A BehaviorSubject is a special type of Subject that: 

• Requires an initial value when created. 
• Always stores and replays the latest value to new subscribers immediately. 

Key Points 

• Has an initial (default) value. 
• Always emits the last emitted value to new subscribers. 
• Ideal for state management or data sharing between components/services. 

Example - BehaviorSubject 

import { BehaviorSubject } from 'rxjs'; 
const behaviorSubject = new BehaviorSubject<string>('Initial Value'); 
behaviorSubject.subscribe(val => console.log('Subscriber 1:', val)); 
behaviorSubject.next('First Update'); 
behaviorSubject.next('Second Update'); 
behaviorSubject.subscribe(val => console.log('Subscriber 2:', val)); 
behaviorSubject.next('Third Update'); 

Output 
 

Subscriber 1: Initial Value 
Subscriber 1: First Update 
Subscriber 1: Second Update 

Subscriber 2: Second Update   ✅ (got last value immediately) 



Subscriber 1: Third Update 
Subscriber 2: Third Update 

Notice 

Subscriber 2 instantly received the last emitted value (Second Update) even though it subscribed later. 

Key Differences 

Feature Subject BehaviorSubject 

Initial Value     No Required 

Stores Last Value     No Yes 

When Subscribed Later Gets only new values Gets last + new values 

Common Use Case Event emitters, user actions Data/state sharing, user info 

Number of values emitted Only future Last + future 

Best For Broadcasting State management 

 


