-INET

INTERVIEW
QUESTIONS

ROHATASH KUINAR

ABOUT THE BOOK

This book contains important .NET interview questions that will help you prepare for
technical interviews. The questions are selected to cover the topics that are most
commonly asked in real interviews, so you can be well-prepared and confident.

ABOUT THE AUTHOR
Rohatash Kumar has over 15 years of experience in software

development. He has helped many candidates succeed in technical
known tech companies by sharing his knowledge and guidance.

Topic (Number of Questions)

1. Partial Class in C# 1
2. Constructor in C# 1
3. Encapsulation in C# 1
4. Single Responsibility Principle 1
5. MVC- Action Method Return Types 1
6. MVC-ViewData vs ViewBag vs TempData 1
7. MVC- Action Method Return Types 1
8. Corsin.NetCore 1
9. Design Patterns Introduction 1
10. C#-Singleton Design Pattern 1
11. C#-Factory Design Pattern 1
12. Angular Custom Pipe 1
13. Angular Subject vs BehaviorSubject 1

TOTAL 12

Partial Class in C#

Partial Class Introduction

1. A partial class allows a single class to be divided into two separate 4. All the parts must use the partial keyword.
hysical files. During compile time these files get compiled into a single

pl y & P 8 P 8 5. All the parts must be available at compile time to form the final type.
class.
)))) 6. All the parts must have the same accessibility such as public, private
2. A partial class is created by using a partial keyword.

and so on.

3. The partial keyword indicates that other parts of the class, struct, or

interface can be defined in the namespace.
The following class definition defines a partial class in C#:

//partial class
Public partial class PartialClass

{
}

Suppose you have a Person class. That definition is divided into two physical source files, Personl.cs and Person2.cs. Then these two files have a class that is a partial
class. You compile the source code and then create it in a single class.

Compile to

one Single
Class

Real World Example

Recently, In My Project, | am using Entity Framework Database First Approach. In that case, the Entity Framework will create the models i.e. the classes based on the
database and it creates the classes as partial classes. Next, | want to do some modifications with the auto-generated partial classes like adding some additional
properties or adding some attributes. But, if | do the modification with the auto-generated partial classes, then my changes will be lost when | update the EDMX file.
So, what | generally do is, create a partial class, and in that partial class, | do all the customization.

In the following figure you can see how the auto-generated code has partial classes and partial method.

[global::System.Data. anq Mappxng leAttr
public partial clas ;) : INotifyP

partial methods for custom coding

OnlLoaded(); ‘
partial veoid|OnValidate(System.Data.Linq.Ch
partial void|OnCreated();

partial void|OnCustomerCodeChanging(string
partial void|OnCustomerCodeChanged();
partial void|OnCustomerNameChanging(string

partial void|OnCustomerNameChanged();
partial void) OnGeldCustomerChanging(System.

—_— -y ——— - -

i app. C°“ﬁ9 LINQ Autogenerated code
) Classl.cs

DataClasses1.dbml
%] DataClasses 1.dbml.layout
%] DataClasses1.designer.cs

The partial methods later can be extended for including custom logic. For instance, you can see in the following code for the preceding auto-generated class
"tbICustomer" we have used partial methods to override the "OnCustomerCodeChanged" event to ensure that the customer code is not more than 6 length.

public partial class tblCustomer
partial void OnCustomerCodeChanged()
if (_CustomerCode.Length > 6)

throw new Exception("Customer code can not be greater than 6"

So, by using partial classes and partial methods, LINQ and EF framework keep auto-generating classes and by using partial methods we can customize the class with
our own logic.

Why Partial Classes?

The following are some important points which explain why use partial classes in CH.

Modularization - Partial classes enable breaking a class's definition into Maintenance - Enhances code readability and maintainability by
multiple files. segmenting class logic.

Organized Development - Developers can work on different parts of a Extensibility - Additional functionality can be added to existing classes
class simultaneously without conflicts. without altering the original source code.

Code Generation - Commonly used in tools or frameworks to generate
code, while developers can add custom logic separately.

Advantages of Partial Class

With the help of partial classes, multiple developers can work When you were working with automatically generated code, the code
simultaneously in the same class in different files. can be added to the class without having to recreate the source file like

in Visual studio.
With the help of a partial class concept, you can split the Ul of the

design code and the business logic code to read and understand the You can also maintain your application in an efficient manner by
code. compressing large classes into small ones.

For Example

let us understand Partial Class with an example. First, create a console application and then add a class file with the name Student.cs. Once you add the class file,
then copy and paste the following code into it. Here, please notices the class name is Student and in this class, we have declared 3 auto-implemented properties i.e.
FirstName, LastName and Gender. Here, we have also declared 2 public methods i.e. DisplayName and DisplayStudentDetails.

using System
namespace PartialClassDemo

public class Student
class Program
public string FirstName { get; set
public string LastName { get; set static void Main(string[] args)
public string Gender { get; set
Student emp = new Student
public void DisplayFullName()

FirstName = "Rohatash”
Console.WriteLine($"Full Name is : {FirstName} LastName = "Kumar"
{LastName}" Gender = "Male"
emp.DisplayFullName
public void DisplayStudentDetails() emp.DisplayStudentDetails

Console.WritelLine("Employee Details
Console.WriteLine($"First Name : {FirstName}"
Console.WriteLine($"Last Name : {LastName}"
Console.WriteLine($"Gender : {Gender}"

Output

BN C\Windows\system32\cmd.exe

Full Name is : Rohatash Kumar
Employee Details
First Name : Rohatash

Last Name : Kumar
Gender : Male
Press any key to continue

Splitting Above Class Definition into 2 Files using Partial Classes in C#

Now we split the above Student class definition into two different class files. One class file is going to contain all 3 public auto-implemented properties (FirstName,
LastName and Gender) and the other class file is going to contain the two public methods i.e. DisplayName and DisplayStudentDetails that we have defined inside
the Student class.

Now we need to add two class files with the name StudentOne.cs and StudentTwo.cs The StudentOne.cs class file going to contain all 3 public auto-implemented
properties (FirstName, LastName, Gendar) and the StudentTwo.cs class file going to contain the two public DisplayName and DisplayStudentDetails methods. Even
though the class file names are different, the class name is going to be the same, and in this case, we are providing the class name as Student in both the class file as
well as we are making the class as partial by using the partial keyword.

StudentOne.cs File

using System

using System.Collections.Generic
using System.Ling

using System.Text

using System.Threading.Tasks

namespace partialExample
public partial class Student

public string FirstName { get; set
public string LastName { get; set
public string Gender { get; set

StudentTwo.cs File

using System

using System.Collections.Generic
using System.Ling

using System.Text

using System.Threading.Tasks

namespace partialExample

{
public partial class Student
{
public void DisplayFullName()
{
Console.WriteLine($"Full Name is : {FirstName} {LastName}");
}
public void DisplayStudentDetails()
{
Console.WriteLine("Employee Details : ");
Console.WriteLine($"First Name : {FirstName}");
Console.WriteLine($"Last Name : {LastName}");
Console.WriteLine($"Gender : {Gender}");
}
}
}

Using the Partial Class in C#

Now, we are going to use the Partial classes whose definition is split across two different class files. We need to use the Partial class just like a normal class. We can
create an instance and we can also invoke the members using the instance.

using System;

namespace partialExample

{ class Program
{ static void Main(string[] args)
{ Student emp = new Student
{ FirstName = "Rohatash",
LastName = "Kumar",

Gender = "Male"

emp.DisplayFullName
emp.DisplayStudentDetails

Output

C\Windows\system32\cmd.exe

Full Name is : Rohatash Kumar
Employee Details

First Name : Rohatash

Last Name : Kumar

Gender : Male
Press any key to continue

When do we need to use Partial Class in C#?

There are several situations when splitting a class definition is desirable

Organization - For very large classes, breaking down the class into
logical chunks (e.g., grouping methods by their functionality) can make

the codebase easier to navigate and maintain.

When working on large projects, splitting a class over separate files

allows multiple programmers to work on it simultaneously.

When working with automatically generated source code, the code can
be added to the class without having to recreate the source file. Visual

Studio uses this approach when creating windows form, Web service
wrapper code, and so on.

Code generation - In scenarios where parts of the codebase are
generated automatically (e.g. - designer files in Windows Forms, web
service reference classes, or entities in Entity Framework), separating
auto-generated code from custom code through partial classes helps in
maintaining the codebase. It ensures that manually written code does
not get overwritten by the auto-generation process.

Constructor in CH#

Constructor Introduction

A constructor is a special method in a class that is automatically called when an object of that class is created. It is used to initialize the object. Constructor name will
same as of Class name

using System;

namespace Constructorproject

{
public class Person
{
public string FirstName;
public string LastName;
// Constructor
public Person(string firstName, string lastName)
{
Console.WritelLine(firstName + " " + lastName);
}
}
class Program
{
static void Main()
{
// Usage
Person person = new Person("Rohatash", "Kumar");
Console.ReadLine();
}
}

When to use constructors in real applications?
Initialization - To set initial values for object attributes.
Resource Allocation - To allocate resources like memory or file handles.
Dependency Injection - To inject dependencies required by the object.
1. Initialization
To set initial values for object attributes.

using System
namespace delegateproject

public class Person

public string FirstName
public string LastName

// Initialization (Parameterized) Constructor
public Person(string firstName, string lastName)

FirstName = firstName

LastName = lastName
//Console.WriteLine(firstName +

+ lastName

class Program
static void Main()

// Usage
Person person = new Person("Rohatash", "Kumar"

Console.ReadlLine

2. Resource Allocation

To allocate resources like memory or file handles. This example demonstrates how a constructor can be used to allocate resources (opening a file) and how the
destructor can be used to clean up those resources (closing the file).

using System; // Method to read file content
using System.IO; public string ReadFile()
{
public class FileReader if (_reader == null)
{ {
private StreamReader _reader; return "Reader is not initialized.";
public string FilePath { get; } }
// Constructor try
public FileReader(string filePath) {
{ return _reader.ReadToEnd();
FilePath = filePath; }
catch (Exception ex)
try {
{ return $"An error occurred while reading the
// Allocate the resource (open the file) file: {ex.Message}";
_reader = new StreamReader(FilePath); 1
Console.WritelLine("File opened successfully."); }
}
catch (FileNotFoundException ex) // Destructor to clean up resources
{ ~FileReader()
Console.WriteLine($"File not found: {
{ex.Message}"); if (_reader != null)
} {
catch (Exception ex) _reader.Close();
{ Console.WritelLine("File reader closed.");
Console.WritelLine($"An error occurred: 1
{ex.Message}"); }
} }
}

public class Program

public static void Main(string[] args)

{
// Provide a valid file path

string filePath = "example.txt";

// Create an instance of FileReader

3. Dependency Injection

FileReader fileReader = new FileReader(filePath);

// Read the file content
string content = fileReader.ReadFile();
Console.WritelLine(content);

To inject dependencies required by the object. This example illustrates how dependency injection allows you to decouple the Service class from the specific

implementation of the ILogger interface, promoting flexibility and testability.

using System;

public interface ILogger

{
}

void Log(string message);

public class ConsolelLogger : IlLogger

{

public void Log(string message)

{
}

Console.WritelLine($"Log: {message}");

}

public class Service

{

private readonly IlLogger _logger;

// Constructor Injection
public Service(ILogger logger)

{
}

_logger = logger;

public void DoWork()

{
_logger.Log("Work is being done.");
// Perform work
Console.WritelLine("Service is doing work.");
}
}
public class Program
{
public static void Main(string[] args)
{
// Manually create the dependency
ILogger logger = new Consolelogger();
// Inject the dependency into the service
Service service = new Service(logger);
// Use the service
service.DolWork();
}
}

Types of Constructors

There are several types of constructors, each serving a different purpose. Here are the main types of constructors.

Types of Constructors

Default Parameterized Copy Static
Constructor Constructor Constructor Constructor

There are several types of constructors, each serving a different purpose. Here are the main types of constructors.
1. Default Constructor 4. Static Constructor
2. Parameterized Constructor 5. Private Constructor

3. Copy Constructor

Private
Constructor

Encapsulation in C#

Encapsulation Introduction

The process of binding or grouping the state(Data Members) and behaviour(Data Functions) together into a single unit(class, interface, struct) is called Encapsulation
in CH.

Unit
(Class, Interface, Struct)

State \ / Behavior :
(Data Members) , (Data Functions))

Encapsulation

We can define the above as following.
e State - Data Members
e Behavior - Data Functions

e Unit - class, interface, struct

The Encapsulation Principle ensures that the state and behavior of a unit (i.e., class, interface, struct, etc.) cannot be accessed directly from other units (i.e., class,
interface, struct, etc.).

In C#, this is typically achieved through the use of classes. The idea behind encapsulation is to keep the implementation details of a class hidden from the outside
world, and to only expose a public interface that allows users to interact with the class in a controlled and safe manner.

Real-World Example of Encapsulation

As we already discussed, one of the real-world examples of encapsulation is the Capsule, as the capsule binds all its medicinal materials within it. In the same way,
C# Encapsulation, i.e., units (class, interface, enums, structs, etc) encloses all its data member and member functions within it.

Class

A

Data Function

Example

We want to create a BankAccount class with encapsulated attributes such as balance, and methods like Deposit, Withdraw, and GetBalance. We'll encapsulate

these attributes by making them private and provide public methods to interact with them.

public class BankAccount

private decimal balance public decimal GetBalance()

public BankAccount(decimal initialBalance) return balance

balance = initialBalance

class Program

public void Deposit(decimal amount)
static void Main(string[] args)

balance = balance + amount
BankAccount myAccount = new BankAccount (1000

public void Withdraw(decimal amount) myAccount.Deposit (200
Console.WriteLine("Balance: " +
if (balance >= amount) myAccount.GetBalance

myAccount.Withdraw(800
Console.WritelLine("Balance: " +
myAccount.GetBalance

balance =balance- amount

else

Console.WritelLine("Invalid withdrawal amount or
insufficient balance."

Output

B8 Microsoft Visual Studio Debug Console

1280

408

Balance:
Balance:

Single Responsibility Principle

Single Responsibility Principle

The Single Responsibility Principle (SRP) is one of the five SOLID principles of object-oriented programming and design. It states that a class should have only one
reason to change, meaning that a class should only have one job or responsibility.

A class or
method
should hav
only one

Single
Responsibility

Principle
(SRP)

A class or
method
should have
only a single
responsibility.

Violating the Single Responsibility Principle

Let's look at an example of code that violates the Single Responsibility Principle.

Example of a Class Violating SRP

public class OrderProcessor

{
public void ProcessOrder(Order order)
{
// Validate order
if (order.IsValid)
{
// Save order to database
SaveOrderToDatabase(order);
// Send confirmation email
SendConfirmationEmail (order);
}
}
private void SaveOrderToDatabase(Order order)
{
// Code to save order to the database
Console.WritelLine("Order saved to database.");
}
private void SendConfirmationEmail(Order order)
{
// Code to send confirmation email
Console.WriteLine("Confirmation email sent.");
}
}

In this example, the OrderProcessor class has multiple responsibilities:
e validating the order(validation logic).
e Saving the order to the database.

¢ Sending a confirmation email.

Problems with Violating SRP
Harder to Maintain - Changes in the email sending process or database saving process will require changes to the OrderProcessor class.
Difficult to Test - Testing the OrderProcessor class will be more complex because it involves testing multiple responsibilities at once.
Reduced Reusability - The code for sending emails and saving to the database cannot be reused easily in other parts of the application.
Refactoring to Adhere to SRP

To adhere to the Single Responsibility Principle, we should refactor the code so that each class has only one responsibility. The below code define the refactor of
above violating code.

Example

public interface IOrderRepository

void SaveOrder(Order order

public class OrderRepository : IOrderRepository
public void SaveOrder(Order order)
// Code to save order to the database
Console.WritelLine("Order saved to database.™
public interface IEmailService
void SendEmail(Order order
public class EmailService : IEmailService
public void SendEmail(Order order)

// Code to send confirmation email
Console.WriteLine("Confirmation email sent."

public class OrderProcessor

private readonly IOrderRepository _orderRepository
private readonly IEmailService _emailService

public OrderProcessor(IOrderRepository orderRepository, IEmailService emailService)

_orderRepository = orderRepository
_emailService = emailService

public void ProcessOrder(Order order)

// Validate order
if (order.IsValid)

// Save order to database
_orderRepository.SaveOrder(order
// Send confirmation email
_emailService.SendEmail (order

Single Responsibility Principle Benefits

The SRP has many benefits to improve code complexity and maintenance. Some benefits of SRP are following,

Reduction in complexity of a code - A code is based on its
functionality. A method holds logic for a single functionality or task. So,
it reduces the code complexity.

Increased readability, extensibility, and maintenance - As each
method has a single functionality so it is easy to read and maintain.

Reusability and Reduced Error - As code separates based functionality
so if the same functionality uses somewhere else in an application
then don’t write it again.

Better Testability- In the maintenance, when a functionality changes
then we don’t need to test the entire model.

Reduced Coupling - It reduced the dependency code. A method’s code
doesn’t depend on other methods.

SRP with Multiple Methods

a class adhering to the Single Responsibility Principle (SRP) which have multiple methods. The key is that all the methods should contribute to fulfilling the single
responsibility or purpose of that class. Each method within the class should perform a task that supports the class's main responsibility.

Example of SRP with Multiple Methods

Let's consider an example where we have a ReportGenerator class responsible for generating reports. This class can have multiple methods, each performing a
specific part of the report generation process, but all contributing to the single responsibility of generating a report.

public class ReportGenerator
class Program
public void GenerateReport()
static void Main()

string data = FetchData

string report = FormatReport(data ReportGenerator reportGenerator = new

SaveReport(report ReportGenerator

reportGenerator.GenerateReport

private string FetchData()

Console.WritelLine("Data fetched." Explanation
return "Sample Data"
GenerateReport Method - This is the main method responsible for generating

private string FormatReport(string data) the report. It coordinates the overall process by calling other private methods.

R R T—— FetchData Method - Responsible for fetching data needed for the report.

Console.WriteLine("Report formatted." FormatReport Method - Responsible for formatting the fetched data into a
return $"Formatted Report: {data}" report.

SaveReport Method - Responsible for saving the formatted report.
private void SaveReport(string report)
Each method contributes to the single responsibility of the ReportGenerator
// Code to save the report

) - class, which is to generate a report.
Console.WritelLine("Report saved."

MVC- Action Method Return Types

A controller action method in ASP.NET MVC or ASP.NET Core can return various types of results based on the requirement. Below are the common
return types with examples and full code.

PartialView
Result

StatusCode

IsonResult
Result

Types of
Action

BadRequest Result ContentResult
Result

NotFound
Result

RedirectToAction RedirectResult
Result

Here are the names of the return types for a controller action method in ASP.NET MVC or Core.

1. ViewResult
2. PartialViewResult
3. JsonResult
4. ContentResult
5. FileResult
6. RedirectResult

1. ViewResult

This is used to return a view to the user.

public IActionResult Index()
{

return View(); // Returns the default view associated
with this action.

}

2. PartialViewResult

Returns a partial view, often used for rendering parts of a web page.

public IActionResult LoadPartial()
{

return PartialView(" PartialView"); // Returns a partial
view named " PartialView".

}

3. JsonResult

Returns JSON data, typically used in APIs or AJAX requests.

7. RedirectToActionResult
8. NotFoundResult

9. BadRequestResult

10. StatusCodeResult

11. EmptyResult

public IActionResult GetJsonData()
{

var data = new { Name = "John Doe", Age = 30 };
return Json(data); // Returns JSON-encoded data.

4. ContentResult

Returns plain text or any string content.

public IActionResult GetText()
{

return Content("This is plain text."); // Returns plain
text content.

}

5. FileResult

Returns a file for download or display.
public IActionResult DownloadFile()

{
var fileBytes =
System.IO.File.ReadAllBytes("example.pdf");
return File(fileBytes, "application/pdf",
"example.pdf"); // Returns a file for download.

6. RedirectResult

Redirects to a specific URL.

public IActionResult RedirectToGoogle()

{

return Redirect("https://www.google.com"); // Redirects
to Google.
}

7. RedirectToActionResult

Redirects to another action method.
public IActionResult RedirectToAbout()
{

return RedirectToAction("About", "Home"); // Redirects
to the About action of the Home controller.

}

8. NotFoundResult

Returns a 404 Not Found status.

public IActionResult PageNotFound()
{

}

return NotFound(); // Returns a 404 status.

9. BadRequestResult

Returns a 400 Bad Request status.

public IActionResult InvalidRequest()

{
return BadRequest("Invalid request."); // Returns a 400

status with a message.

}

10. StatusCodeResult

Returns a specific HTTP status code.
public IActionResult CustomStatus()

{
return StatusCode(500); // Returns a 500 Internal Server

Error status.

}

11. EmptyResult

Represents no result (does nothing).

public IActionResult DoNothing()
{

}

return new EmptyResult(); // Does nothing.

MVC-ViewData vs ViewBag vs TempData

In ASP.NET MVC, ViewData, ViewBag, and TempData are used to pass
data between controllers and views, but they each have their unique
characteristics.

ViewBag

o dictionary object to pass data

ViewData :
from controller to view

* dictionary object to pass data
TempData from one controller/action to
another controller/action

2. Data is accessed using string keys.
3. It's useful for passing data from the controller to the view.
4. Data is available only during the current request.

public ActionResult Index()

{
ViewData["Message"] = "Hello from ViewData!";
return View();

}

//View

<p>@ViewData["Message"]</p>
ViewBag

1. It's a dynamic object that uses the ExpandoObject under the
hood.

2. Easier syntax compared to ViewData as it doesn't require
casting.

3. Also used for passing data from the controller to the view.

4. Data is available only during the current request.

public ActionResult Index()

{
ViewBag.Message = "Hello from ViewBag!";
return View();

}

//View

<p>@ViewBag.Message</p>

TempData

w

It's a dictionary object derived from TempDataDictionary.
Stores data that is needed for more than a single request, useful

for redirection.

Data persists until it is read, or the session expires.

Data is accessed using string keys.

public ActionResult Index()

TempData[“Message”] as string;

{ TempData["Message"] = "Hello from TempData!";
return RedirectToAction("NextAction");
}
public ActionResult NextAction()
{
string message =
ViewBag.Message = message;
return View();
}
//View

<p>@ViewBag.Message</p>

Here's a comparison of ViewData, ViewBag, and TempData in tabular

form.
Feature ViewData ViewBag TempData
Type Dictionary (ViewDataDictionary) |[Dynamic (ExpandoObject) Dictionary (TempDataDictionary)
Syntax [ViewData["Key"] ViewBag.Key TempData["Key"]
Casting |[Requires casting INo casting required Requires casting
Scope Current request Current request Subsequent requests (short-lived)
Usage Pass data from controller to view |Pass data from controller to view [Pass data between controller actions
. Data is lost after the request is Data is lost after the request is Data persists until read or session
Persistence .
complete complete expires

MVC- Action Method Return Types

In the context of the ASP.NET MVC framework, filters are used to execute
code before or after specific stages in the request processing pipeline.
Filters can handle cross-cutting concerns, such as authentication,
authorization, logging, and error handling, across multiple actions or
controllers.

Authorization
Filters

Exception

i Action Filters
Filters

There are several types of filters in MVC, each serving a different
purpose.

1. Authorization Filter

Used to perform authentication and authorization before an action
method is executed. It ensures that the user is authorized to access a
particular action or controller.

Executed At - Before the Action Filter and Action Method.
Example - AuthorizeAttribute

You can use this filter to restrict access to certain users or roles.
Authorization Filter Example

Let's say you have an admin panel that only authorized users should
access.

[Authorize(Roles = "Admin")]

public class AdminController : Controller
{
public ActionResult Index()
{
return View();
}

Output

o If a user with the Admin role accesses the Index action, they see the admin panel view.
o If a user without the Admin role tries to access it, they are redirected to the login page or shown an unauthorized message.

2. Action Filter

Used to perform logic before and after an action method executes. Commonly used for logging, validation, or modifying data.
Executed At - Before and after the execution of an action method.

Example - ActionFilterAttribute

Action Filter Example

Suppose you want to log the execution time of each action method.

public class LogExecutionTimeAttribute : ActionFilterAttribute

{
private Stopwatch stopwatch;
public override void OnActionExecuting(ActionExecutingContext filterContext)
{
stopwatch = Stopwatch.StartNew();
}
public override void OnActionExecuted(ActionExecutedContext filterContext)
{
stopwatch.Stop();
var executionTime = stopwatch.ElapsedMilliseconds;
filterContext.HttpContext.Response.Headers.Add("X-Execution-Time", executionTime.ToString());
}
}

[LogExecutionTime]
public class HomeController : Controller

{
public ActionResult Index()

return View();

}

Output

e The response header will include the execution time of the Index action.
« Example - X-Execution-Time: 15

3. Result Filter

Used to perform logic before and after a result (like a ViewResult or JsonResult) is executed. Useful for operations like modifying the response or adding
headers.

Executed At - Before and after the ActionResult executes.
Example - OutputCacheAttribute (for caching responses)
Result Filter Example

Let's say you want to add a custom header to the response of an action.

public class AddCustomHeaderAttribute : ResultFilterAttribute

{
public override void OnResultExecuting(ResultExecutingContext filterContext)
{
filterContext.HttpContext.Response.Headers.Add("X-Custom-Header", "This is a custom header");
}
}
[AddCustomHeader]
public class HomeController : Controller
{

public ActionResult Index()

return View();

}

Output

e The response header will include the custom header.
« Example - X-Custom-Header: This is a custom header

4. Exception Filter

Used to handle unhandled exceptions that occur in controllers or actions. It is commonly used to log errors or show custom error pages.
Executed At - Only when an exception occurs during the execution of an action method or result.
Example - HandleErrorAttribute

Exception Filter Example - Suppose you want to log exceptions globally in your application.

public class GlobalExceptionFilter : IExceptionFilter public static void
{ RegisterGlobalFilters(GlobalFilterCollection filters)
public void OnException(ExceptionContext filterContext) {
{ filters.Add(new GlobalExceptionFilter());
var exception = filterContext.Exception; }
filterContext.Result = new RedirectToRouteResult(
new System.Web.Routing.RouteValueDictionary Output
{

{ "controller", "Error" },

) o If an exception occurs, the user is redirected to the Error
{ "action", "Index" }

controller's Index action.
o The exception details are logged.

s

filterContext.ExceptionHandled = true;

Cors in .NetCore

your application to specify which domains are permitted to access its resources. By default, web browsers enforce the same-origin policy, which restricts web pages
from making requests to a domain different from the one that served the web page. CORS is used to relax this restriction and allow cross-origin requests in a controlled
and secure manner.

Understanding CORS

When a web page on Domain A tries to access resources (like APls) from Domain B, the browser checks the CORS policy set by Domain B. CORS is implemented by
adding specific HTTP headers to the server response.

Why CORS
Here is why CORS is important.
1. To Enable Cross-Origin Requests
e Browsers enforce a security policy called Same-Origin Policy, which restricts web pages from making requests to a domain different from the one that

served the web page.
e CORS provides a way to bypass this restriction by explicitly allowing certain cross-origin requests.

2. To Improve API Usability
e If your .NET application exposes a Web API, it is likely that external clients (like front-end applications hosted on different domains) will need to consume the

API.
e CORS enables these external applications to interact with your API securely.

3. To Enhance Security

e By configuring CORS, you can control which domains, HTTP methods, and headers are permitted to interact with your resources.
o This reduces the risk of unauthorized access and ensures only trusted clients are allowed.

4. To Support Modern Web Applications

o Single Page Applications (SPAs), mobile apps, and third-party integrations often require access to APIs hosted on different domains.
e CORS makes it possible for these applications to function seamlessly.

5. To Prevent Errors in Development
e Without CORS, requests to your APl from a different origin would be blocked by the browser, resulting in errors like.

Access to XMLHttpRequest at 'http://example.com/api' from origin 'http://another-origin.com' has been blocked by CORS policy.

Same Origin
Two URLs have the same origin if they have identical schemes, hosts, and ports. These two URLs have the same origin:

https://example.com/foo.html
https://example.com/bar.html

Different Origins

These URLs have different origins than the previous two URLs.
https://example.net: Different domain
https://contoso.example.com/foo.html: Different subdomain
http://example.com/foo.html: Different scheme

https://example.com:9000/foo.html: Different port

https://example.com/bar.html

What Happens Without CORS?
e Browsers block cross-origin requests, resulting in errors like.
Access to XMLHttpRequest at '...' from origin '..." has been blocked by CORS policy.

e Your application will fail to function if it relies on APIs hosted on a different origin.

When Should You Use CORS?
1. Cross-Origin Frontend-Backend Communication - Many applications have separate frontend and backend services running on different domains

(e.g., frontend on https://app.example.com and backend APl on https://api.example.com).

Without CORS, the browser blocks requests between these domains. CORS enables these applications to work seamlessly.
2. Third-Party API Consumers - When your APl is used by external clients.
Microservices Architecture - When services in a microservices setup communicate across origins.
4. Content Delivery Networks (CDN) - When using CDNs to serve resources like images or scripts from different origins.

w

Steps to Enable CORS in .NET Core

Here's how you can enable and configure CORS in a .NET Core application.

NuGet: GenerateToken = X A

Installed Updates NuGet Package Manager: GenerateToken

2
X -~ Include prerelease Package source: nuget.org ~ B

Ner Microsoft.AspNet.Cors @ &
Microsoft.AspNet.Cors @ by Microsoft, 88.5h 5.3.0
This package contains the core components to

H - 3
enable Cross-Origin Resource Sharing (CORS) in AS... Version: Latest stable 5.3.0 Install

@ Package source mapping is off. C ure
Microsoft.AspNet.WebApi.Cors @ by Micrc 5.3.0 e ——
This package contains the components to enable

~ = . “ . v) Options
Cross-Origin Resource Sharing (CORS) in ASP.NET...

Microsoft.Owin.Cors @ by Microsoft, 38.5M ¢ 4.2.2 Description

https://app.example.com/
https://api.example.com/

After installed Cors. We can check.

Solution Explorer
Ora o0-sE0 %
Search Solution Explorer (Ctrl+;)

3 Solution ‘GenerateToken' (1 of 1 project)
4 5] GenerateToken
P @ Connected Services
4 & Dependencies
D @ Analyzers
> & Frameworks
4 '@ Packages
‘@ Microsoft.AspNet.Cors (5.3.0)
.@ Microsuit.AsphetCore. Authentication.JwtBearer (8.0.8
‘D Microsoft. AspNetCore.ldentity (2.2.0)
'@ Microsoft. AspNetCore.ldentity.EntityFrameworkCore (
e Microsoft.EntityFrameworkCore.SqlServer (8.0.8)
‘@ Microsoft.EntityFrameworkCore.Tools (8.0.8)
[Microsoft.IdentityModel.Tokens (8.1.0)
'@ Microsoft.VisualStudio.Azure.Containers.Tools.Targets
[Swashbuckle.AspNetCore (6.8.1)
‘@ System.ldentityModel.Tokens.Jwt (8.1.0)
P @ Properties

g
P
D
P
P
D
D
P
P
D

1. Install Required NuGet Package

If you are using .NET Core 2.x, ensure you have the required package:

2. Register CORS in Program.cs File in .NetCore 7
You need to add and configure CORS middleware in the service container.
builder.Services.AddAuthorization();

builder.Services.AddScoped<IMaterialService, MaterialService>();
builder.Services.AddSwaggerGen();

// Adding CORS services with a policy
builder.Services.AddCors(options =>

{
options.AddPolicy("AllowSpecificOrigins", builder =>

{
builder.WithOrigins("https://example.com", "https://anotherdomain.com") // Allow specific domains
AllowAnyHeader() // Allow any header
AllowAnyMethod(); // Allow any HTTP method (GET, POST, etc.)

1;

options.AddPolicy("AllowAll", builder =>
{
builder.AllowAnyOrigin() // Allow all domains
AllowAnyHeader()
AllowAnyMethod();
});

1,
builder.Services.AddControllersWithViews();

Use the CORS middleware in Program.cs file

app.UseRouting();

// Enable CORS globally or for specific endpoints
app.UseCors("AllowSpecificOrigins");
app.UseAuthentication();

3. Apply CORS to Specific Controllers or Endpoints
You can apply the CORS policy to specific controllers or actions using the [EnableCors] attribute.
a. For a specific controller

[EnableCors("AllowSpecificOrigins")]
[ApiController]
[Route("api/[controller]")]
public class SampleController : ControllerBase
{

[HttpGet]

public IActionResult Get()

{

return Ok("CORS is enabled for specific origins.");

}

}

b. Disable CORS for a specific action

[DisableCors]
[HttpGet("no-cors")]
public IActionResult NoCors()

{
return Ok("CORS is disabled for this action.");

}

Testing CORS

Once you've set up CORS, you can test it by making requests to your API from a different domain and verifying that the responses are successfully received.

CORS Options

The CorsPolicyBuilder provides several methods to configure CORS behavior:

1. Allow Specific Origins 4. Allow Specific Headers
builder.WithOrigins("https://example.com"); builder.WithHeaders("Content-Type", "Authorization");
2. Allow All Origins 5. Allow All Headers
builder.AllowAnyOrigin(); builder.AllowAnyHeader();
3. Allow Specific HTTP Methods 6. Support Credentials - If your APl requires cookies or other credentials

to be included in cross-origin requests.
builder.WithMethods("GET", "POST");
builder.AllowCredentials();

Debugging CORS Issues

1. Check Response Headers - Ensure the Access-Control-Allow-Origin header is returned by the server.

2. Handle Credentials Properly - Use AllowCredentials if necessary.

3. Configure Allowed Methods and Headers - Ensure your API explicitly allows the methods and headers being used by the client.
4. Browser Console - Look for CORS errors in the browser developer tools.

Design Patterns Introduction

Design patterns are typical solutions to common problems in software design. Each pattern is like a blueprint that you can customize to solve a particular design
problem in your code.

Design Patterns Introduction

Design Pattern are well-established solutions to common software design problems that developers encounter while building applications. They are not specific pieces
of code but rather general reusable templates that can be adapted to solve specific problems in various contexts. Design Patterns help in designing flexible, scalable,
and maintainable software.

Key Benefits of Design Patterns

ouhkwnNneE

Reusability - Patterns provide proven solutions that can be reused in different projects, reducing the need to reinvent the wheel.

Best Practices - They encapsulate best practices and expertise, guiding developers toward effective design choices.

Communication - Patterns offer a shared vocabulary among developers, making it easier to communicate design ideas and solutions.
Maintainability - By promoting a structured approach to problem-solving, patterns help create systems that are easier to maintain and extend.
Scalability - They aid in designing systems that can grow and evolve without significant refactoring.

Flexibility - Patterns encourage the design of systems that are adaptable to changes in requirements or technology.

Problems Solved by Design Patterns

Duplication of Code - By using patterns like Singleton or Factory, you can avoid repetitive code and centralize logic that might otherwise be scattered.
Complexity Management - Patterns like Facade and Mediator simplify complex systems by providing a unified interface or managing communication
between components.

Decoupling Components - Patterns like Dependency Injection, Adapter, and Strategy help in reducing the dependency between classes, making the system
more modular.

Flexibility and Extensibility - Patterns such as Decorator and Observer allow extending the functionality of classes dynamically without modifying existing
code.

Maintainability - By following patterns, developers create a more understandable and consistent codebase, which is easier to maintain and evolve.

Common Types of Design Patterns

Design Patterns are broadly categorized into three types.

Creational

. Singleton

. Factory Method
. Abstract Factory
. Builder

. Prototype

Design Patterns

Structural

. Adapter

. Bridge

. Composite
. Decorator
. Facade

. Flyweight
. Proxy

Behavioral

Chain of Responsibility
. Command

. Interpreter

. Iterator

. Mediator
Memento

. Observer

State

. Strategy
10.Template Method
11.Visitor

1.
p
3
4
5
6.
7
8.
9

1. Creational Patterns -These patterns deal with object creation

mechanisms, trying to create objects in a manner suitable for the
situation. They help manage the creation process, making it more
adaptable and efficient.

Examples - Singleton, Factory Method, Abstract Factory, Builder,
Prototype

Structural Patterns - These patterns deal with the composition of
classes or objects. They help in forming large structures by composing
objects and classes in a way that results in more flexible and efficient
design.

Examples - Adapter, Bridge, Composite, Decorator, Facade, Flyweight,
Proxy

Behavioral Patterns -These patterns deal with communication
between objects and how responsibilities are distributed among them.
They focus on improving communication and assigning clear
responsibilities to objects.

Examples -Chain of Responsibility, Command, Interpreter, Iterator,
Mediator, Memento, Observer, State, Strategy, Template Method,
Visitor

C# - Singleton Design Pattern

The Singleton pattern ensures that a class has only one instance and provides a global point of access to that instance. Let's explore the potential problems that arise
if you don't use these design patterns in real-world scenarios.
1. Singleton Pattern

The Singleton pattern is a design pattern that ensures a class has only one instance and provides a global point of access to that instance. If we do multiple requests
to the class, will get a single copy of an instance. The Singleton pattern ensures that a class has only one instance and provides a global point of access to that instance.

Singleton Class

Client-1

instance-1

req\)‘"‘;i// e
I/-"';(si;“‘-e"‘

Client-3

Advantages of the Singleton Pattern

1. Controlled Access - Singleton ensures that there is controlled access to the instance, preventing accidental multiple instances.
2. Reduced Memory Overhead - Since only one instance is created, it saves memory.
3. Consistency Across the System - Having a single instance ensures consistent behavior across different parts of the application.

When to Use the Singleton Pattern

o Resource Management - When managing resources like file handles, database connections, or logging, where only one instance should be active.

o Configuration Settings - When an application has global configuration settings, it’s useful to have a single instance that manages these settings.

o Cross-Cutting Concerns - For concerns like logging or caching that are used across various parts of an application, Singleton ensures consistent behavior and
state.

Problems - A logging system without Singleton
Multiple Instances - Without a Singleton, multiple instances of the logging class could be created.

This could lead to following points.
e Inconsistent Logging - Different parts of the application might log to different files or outputs, making it difficult to track issues.
e Resource Contention - Multiple instances could try to write to the same log file simultaneously, causing file access conflicts or corrupted log files.
e Memory Waste - Creating multiple logger instances would consume unnecessary memory.

A logging system with Singleton

You want to ensure that there's only one instance of the logger class that writes logs to a file. Multiple instances could lead to file access conflicts or inconsistent
logging. Ensures that only one instance of the Logger class exists, preventing issues related to file access or inconsistent logging.

Example

using System;

using System.Collections.Generic;
using System.Lingq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApp2

{

public class Singleton

{

private static Singleton _instance;

// Private constructor ensures that the class cannot be instantiated from outside
private Singleton() { }

public static Singleton Instance

{

get
{
if (_instance == null)

{

_instance = new Singleton();

}
return _instance;
}
}

public void DoSomething()
{
Console.WriteLine("Singleton instance method called.");
}
}

internal class Program

{
static void Main(string[] args)

{

// Accessing the Logger instance
Singleton logger = Singleton.Instance;

// Usage
logger.DoSomething();

}
}
}

Example Explanation
Consider the Logger class from your previous code.

¢ Private Constructor -The constructor is private, so no one can create an instance of Logger directly using new Logger().
o Static Instance - A static field _instance holds the single instance of the Logger class.

o Thread-Safe Access - The Instance property uses a lock mechanism to ensure that only one thread can create the instance in a multithreaded environment.
¢ Global Access Point - Logger.Instance provides a global access point to the single Logger instance.

Singleton Instance Creation

Singleton logger = Singleton.Instance;

Singleton logger1 = Singleton.Instance;
1. Here, Singleton.Instance is used to access the single, globally shared instance of the Singleton class.
2. Both logger and logger1 are references to the same instance of the Singleton class.

3. The Instance property typically includes logic to check if an instance already exists. If it doesn't, it creates one; if it does, it returns the existing instance.

Singleton Instance Creation

logger.DoSomething();
loggerl.DoSomething();
1. The DoSomething() method is called on both logger and logger1.
2. Since logger and logger1 refer to the same instance, calling DoSomething() on either will affect the same instance.

Lock Mechanism

Ensures thread safety, making sure that only one instance is created, even in multithreaded scenarios.
using System;

public sealed class Singleton
{
private static Singleton _instance = null;
private static readonly object lock = new object();

// Private constructor prevents instantiation from outside
private Singleton()
{

Console.WriteLine("Singleton instance created");

}

// Public static method to provide access to the single instance
public static Singleton Instance
{
get
{
lock (_lock) // Ensures thread safety
{
if (_instance == null)
{
_instance = new Singleton();
}
}
return _instance;
}
}

// Example method for the Singleton class
public void DoSomething()
{
Console.WriteLine("Singleton is working!");
}
}

class Program
{
static void Main(string[] args)
{
// Try to create instances
Singleton s1 = Singleton.Instance;
Singleton s2 = Singleton.Instance;

// Both instances should be the same
if (s1 ==s2)
{

Console.WriteLine("Both instances are the same.");

s1.DoSomething();
}

Above Code Explanation
e Private Constructor - Prevents external instantiation of the class.
o Static Instance Field - Holds the single instance of the class.

e Lock Mechanism - Ensures thread safety, making sure that only one instance is created, even in multithreaded scenarios.
¢ Instance Property - Provides global access to the instance

Real-World Example - Singleton Pattern as a Government

The government of a country perfectly fits the Singleton pattern, as there can only be one official government. It is a global point of access that identifies the group
of people in charge.

Government Class (Singleton)

e The Government class is a singleton. It contains a private static field _instance and a static method Instance to provide access to this single instance.
e The constructor is private to ensure that no other part of the program can create additional government instances.

Thread Safety

e Alock object ensures that only one thread can create the government instance at a time, preventing multiple instances from being created in a multi-
threaded environment.

Requests from Citizens and Agencies

o Citizen and Agency classes simulate entities that interact with the government by calling the ManageCountry() method.
e Both send different requests, and those requests are processed by the same government instance.

Global Access

e The main program demonstrates that both Citizen A and Agency B are interacting with the same government instance, fulfilling the Singleton pattern.
using System;

public sealed class Government

{
// Static variable to hold the single instance of the Government class
private static Government _instance = null;

// Lock object for thread safety
private static readonly object lock = new object();

// Private constructor ensures no other class can instantiate it
private Government()

{

Console.WriteLine("Government has been created.");

}

// Public static method to provide global access to the instance
public static Government Instance
{
get
{
lock (_lock)
{
// Create a new instance only if it doesn't exist
if (_instance == null)
{
_instance = new Government();
}
}
return _instance;
}
}

// Method to simulate managing country policies

public void ManageCountry(string request)
{
Console.WriteLine(S"Processing request: {request}");
}
}

// Simulating citizens and agencies sending requests to the Government
public class Citizen

{

public void RequestService(string request)
{
Console.WriteLine("Citizen is sending request...");
Government.Instance.ManageCountry(request);
}
}

public class Agency
{
public void RequestPolicyChange(string request)
{
Console.WriteLine("Agency is sending request...");
Government.Instance.ManageCountry(request);
}
}

// Main program to demonstrate the Singleton pattern
class Program
{
static void Main(string[] args)
{
// Simulating citizens and agencies making requests
Citizen citizenA = new Citizen();
citizenA.RequestService("Request for better healthcare");

Agency agencyB = new Agency();

agencyB.RequestPolicyChange("Request for tax reform"

// Showing that both Citizen A and Agency B are using the same Government instance
if (Government.Instance == Government.Instance)

Console.WriteLine("Both Citizen A and Agency B are interacting with the same government instance."

Output

Citizen is sending request...

Government has been created.

Processing request: Request for better healthcare
Agency is sending request...

Processing request: Request for tax reform

Both Citizen A and Agency B are interacting with the same government instance.

Application of Singleton Design Pattern
Some real-time techniques in which the Singleton Design Pattern can be used.

1. Proxies for Services - Invoking a Service APl is a complex operation in an application, as we all know. The most extended process is creating the Service client
to invoke the service API. If you make the Service proxy as a Singleton, your application's performance will improve.

2. Facades - Database connections can also be created as Singletons, which improves application performance.

3. Logs - Performing an |I/O operation on a file in an application is an expensive operation. If you create your Logger as a Singleton, the /O operation will
perform better. A public and static method to get the reference to the new entity created by instance.

4. Data sharing - If you have any constant or configuration values, you can store them in Singleton so other application components can read them.

5. Caching - As we all know, retrieving data from a database takes time. You can avoid DB calls by caching your application's master and configuration in
memory. In such cases, the Singleton class can handle caching efficiently with thread synchronization, significantly improving application performance.

Factory Design Pattern

Factory Design Pattern Introduction

The Factory Pattern is a creational design pattern that provides an interface for creating objects without specifying their exact class. The factory method encapsulates
object creation, making it easier to manage and modify. This pattern allows for decoupling the code that uses the objects from the code that creates them.

Advantages of the Factory Pattern

1. Decoupling - It separates the object creation logic from the main business logic, reducing dependency and making the system more modular.

Flexibility - You can introduce new classes without modifying the client code. This improves scalability and maintainability.

3. Simplifies Code - Instead of spreading object creation logic throughout the system, it centralizes it in a factory, which makes the code more readable and
manageable.

4. Object Reusability - It allows for reusing existing objects when applicable, reducing memory consumption.

5. Promotes Interface-Based Programming - Encourages the use of interfaces or abstract classes, improving code extensibility.

N

When to Use the Factory Pattern

Complex Object Creation - When creating objects is complex, involves multiple steps, or requires specific configuration.

Switching Between Related Objects - When a system needs to switch between different related classes dynamically.

Code that Depends on Interfaces - When working with abstractions (interfaces or abstract classes) and the specific implementation should be hidden.
Needing Centralized Object Management - When object creation needs to be managed and controlled from a central point, like in dependency injection
scenarios.

PwnNE

Problems - A document system without FactoryScenario: A common real-world example of the Factory Design Pattern is the creation of different types of documents
in a document processing application. Consider a scenario where you have a document editor application that can create different types of documents, such as
Resume, Report, and Letter.

If a factory pattern is not used in a document generation system, several problems can arise.

Problems

o Tight Coupling - Without the Factory Method pattern, the code that creates documents would need to know the exact classes (e.g. Resume, Report). This
makes the system tightly coupled and harder to extend.

o Difficulty in Adding New Document Types - If a new document type is needed (e.g., Excel), you would have to modify the existing code to accommodate the
new class. This violates the Open/Closed Principle (OCP), which states that classes should be open for extension but closed for modification.
e Code Duplication - The code for creating different document types would likely be duplicated in multiple places, leading to maintenance issues.

A Creation of Different Types of Documents System with Factory Pattern

A common real-world example of the Factory Design Pattern is the creation of different types of documents in a document processing application. Consider a scenario
where you have a document editor application that can create different types of documents, such as Resume, Report, and Letter.

A diagram can help clarify the structure and interactions in the Factory Design Pattern. Here’s a visual representation of the Factory Pattern for creating different
types of documents.

Client Code

IDocumentFactory

ResumeDocumentFactory ReportDocumentFactory LetterDocumentFactory

IDocument

ReportDocument

S

How It Works

1. Client Code - Requests a document creation by using the factory interface (IDocumentFactory).
2. Factory Interface -The client interacts with the factory interface, requesting a document.

3. Concrete Factory - The specific factory (e.g., PdfDocumentFactory) creates and returns an instance of the corresponding document type (e.g., PdfDocument).
4. Document Creation - The client interacts with the IDocument interface to use the document, without needing to know the details of the document's creation.

Example
Here’s the entire code example using the Factory Pattern in C#.

// Product interface
public interface IDocument

{

void Create();

}

// Concrete Products
public class Resume : IDocument

{
public void Create()

{

Console.WriteLine("Creating a Resume");

}
}

public class Report : IDocument

{
public void Create()

{

Console.WriteLine("Creating a Report");

}
}

public class Letter : IDocument

{
public void Create()

{

Console.WriteLine("Creating a Letter");

// Factory interface
public interface IDocumentFactory

{

IDocument CreateDocument();

}

// Concrete Factories
public class ResumeFactory : IDocumentFactory

{

public IDocument CreateDocument()

{

return new Resume();

}
}

public class ReportFactory : IDocumentFactory

{

public IDocument CreateDocument()

{

return new Report();

}
}

public class LetterFactory : IDocumentFactory

{

public IDocument CreateDocument()

{

return new Letter();

}
}

class Program

static void Main()

// Client code using the Factory pattern
IDocumentFactory resumeFactory = new ResumeFactory
IDocument resume = resumeFactory.CreateDocument
resume.Create(); // Output: Creating a Resume

IDocumentFactory reportFactory = new ReportFactory
IDocument report = reportFactory.CreateDocument
report.Create(); // Output: Creating a Report

IDocumentFactory letterFactory = new LetterFactory

IDocument letter = letterFactory.CreateDocument
letter.Create(); // Output: Creating a Letter

Output

BN C:\Windows\system32\cmd.exe

reating a Resume
reating a Report

reating a Letter

Advantages of the Factory Pattern in this Example.

e Decoupling - The client code is decoupled from the specific implementations (Resume, Report, Letter). It only depends on
the IDocumentFactory and IDocument interfaces.

e Easy to Extend - If a new document type (e.g., Invoice) needs to be added, you can simply create a new InvoiceFactory and Invoice class without modifying
any existing code.

e Scalability - The system can easily scale with new types of documents without changing the core logic.

Real-World Example - Transport System

A transport booking system allows users to book various modes of transportation, such as Car, Bus, or Bicycle. Each type of transport has different characteristics and
booking procedures, but the system should be able to handle them all through a unified interface. Using the Factory Pattern, the transport system can dynamically
create and manage different vehicle objects.

Example
// Transport interface {
public interface ITransport Console.WriteLine("Bicycle has been booked.");
{ }

void Book(); }
}

// Factory interface

// Concrete Transport Classes public interface ITransportFactory
public class Car : ITransport {
{ ITransport CreateTransport();

public void Book() }

{

Console.WriteLine("Car has been booked."); // Concrete Factories

} public class CarFactory : ITransportFactory

} {
public ITransport CreateTransport()

public class Bus : ITransport {
{ return new Car();

public void Book() }

{ }

Console.WriteLine("Bus has been booked.");

} public class BusFactory : [TransportFactory

} {
public ITransport CreateTransport()

public class Bicycle : ITransport {
{ return new Bus();

public void Book() !

public class BicycleFactory : ITransportFactory
public ITransport CreateTransport()

return new Bicycle

// Client code
class Program

static void Main(string[] args)
// Simulating user input for transport selection
string transportType = "Bus"; // Can be "Car", "Bus", or "Bicycle"
ITransportFactory factory = GetTransportFactory(transportType
if (factory != null)
ITransport transport = factory.CreateTransport

transport.Book(); // Booking the transport
Output

B C:\Windows\system32\cmd.exe

Bus has been booked.
Press any key to continue . . .

else

Console.WriteLine("Invalid transport type."

// Factory selection logic
public static ITransportFactory GetTransportFactory(string transportType)

switch (transportType)

case "Car"

return new CarFactory
case "Bus"

return new BusFactory
case "Bicycle"

return new BicycleFactory
default

return null

Advantages in a Real-World Scenario

o Decoupling Creation Logic - The client code doesn’t need to know the specific details of how each transport type is created. It only interacts with the
ITransportFactory and ITransport interfaces.

o Extensibility - If new transport types (e.g., Train, Taxi, or Scooter) are introduced, you can add new factory and transport classes without changing the
existing code.

o Flexibility - Different transport types can be instantiated dynamically based on user input or other conditions (e.g., availability, pricing, etc.).

e Maintenance - The code is easier to maintain because the transport creation logic is centralized in factories. Any change in the transport creation process is
isolated from the rest of the system.

e Reusability - The transport booking logic is reusable and can be extended to accommodate new features, such as pricing strategies, vehicle conditions, or
booking rules.

Applications of the Factory Design Pattern

e GUI Frameworks - Creating platform-specific components (Windows, macOS, Linux) through a factory.

o Database Access - Switching between different databases (e.g., MySQL, SQL Server) based on configurations.

e Logging Libraries - Creating different types of loggers (file logger, console logger, database logger) through a factory.

e Game Development - Creating different types of game entities (monsters, players, NPCs) dynamically based on the game state.
e Parser Tools - Dynamically creating different types of file parsers (e.g., XML, JSON, CSV) using a factory.

Angular Custom Pipe

Angular Custom Pipe

In this tutorials we will see how to create angular custom pipe with an example. We will understand that with the employee’s name list. suppose we have created a
student list without prefix Mr. or Mis. before the name of the employee. In future we need to add name add Mr. Or Mis. prefixed before the name of the employee
so we will make a custom pipe for it.

Mr.Rohatash
Rajesh Mr.Rajesh
Rahul Mr.Rahul

Ritesh Added Mr. or Mis Mr.Ritesh
Mr.Ravindar

Rohatash

—
svincar Creating Custom Pipe

Mr.Deepak
Mr.Manoj
Mis.Deepali

Deepak
Manoj
Deepali

In the above image we have the list of employees when we created list of employee we have not added Mr. or Mis prefix before the name. In future there is some
change in the requirement need to add prefix before the name. T do that you can simply create a custom pipe and use it.

Create an application
The following command uses the Angular CLI to create a Angular application. The application name in the following example is angularcustompipe.

ng new angularcustompipe

Add the following code in app.component.ts
import { Component } from '@angular/core’;
@Component({

selector: 'app-root’,

templateUrl: './app.component.html’,
styleUrls: ['./app.component.css']

)

export class AppComponent {
Employee: any[] = [

{
ID: '1', Name: 'Rohatash', Gender: 'Male'

ID: '2', Name: 'Rajesh’, Gender: 'Male'

ID: '3', Name: 'Rahul', Gender: 'Male'

ID: '4', Name: 'Ritesh', Gender: 'Male'

ID: '5', Name: 'Ravindar’, Gender: 'Male'

ID: '6', Name: 'Deepak’, Gender: 'Male'

ID: '7', Name: 'Manoj', Gender: 'Male'

ID: '8', Name: 'Deepali', Gender: 'Female'

I;
}

Add the following code in app.component.html

<table border="1" cellpadding="0" cellspacing="0">
<thead>

<tr style="background-color:blue; color:white">
<th>Employee ID</th>

<th>Name</th>

<th>Gender</th>

</tr>

</thead>

<tbody>

<tr *ngFor='let empobj of Employee'>
<td>{{empobj.ID }}</td>
<td>{{empobj.Name }}</td>
<td>{{empobj.Gender }}</td>

</tr>

</tbody>

</table>

Now run the application. It will display list of employee.

S | (D) localhost:4200

Employee ID Name Gender

Rohatash{Male
Rajesh [Male
Rahul Male
Ritesh [Male
Ravindar[Male
Deepak [Male
Manoj [Male
Deepali [Female

O =J| | =] LI Eof =

Change in Requirement

In future there is slightly change requirement, now they want to show the prefix which depend on the gender of the employee. So we need to add Mr. or Mis. prefix
before the name of the employee. To do that we create a custom pipe.

Creating Angular Custom Pipe

The following command uses the Angular CLI to create a Angular custom pipe. The application name in the following example is nameprefix.

ng g pipe nameprefix

when you type ng g pipe nameprefix and press enter, it create automatically two files which are shown in below image within the app folder. it also update the
app.module.ts file.

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

v Compiled successfully.

PS D:\AngularProgram\angularcustompipe> ng g pipe nameprefix
CREATE src/app/nameprefix.pipe.spec.ts (203 bytes)

CREATE src/app/nameprefix.pipe.ts (225 bytes)

UPDATE src/app/app.module.ts (386 bytes)

PS D:\AngularProgram\angularcustompipe>

We will see created file in the project file structure.

EXPLORKRER
~ OPEN EDITORS
TS app-component.ts srcapp
<> app-componenthtml sraaspp
> TS namepreficpipe.ts src\app
~— ANGULARCUSTOMPIPE s E&2 © =
> _angular
> .wscode
> node_ _modules
~ src
~ app
‘ F app.-component.css
<> app-componenthtml
‘78 app-component.spec.ts
| TS app.-componentts
j‘rs app-module.ts
| TS nameprefix.pipe.spec.ts
TS nameprefix pipe-ts

Now, open nameprefix.pipe.ts file and then copy and paste the following code in it.
import { Pipe, PipeTransform } from '@angular/core’;

@Pipe({
name: 'nameprefix’

)

export class NameprefixPipe implements PipeTransform {

transform(name: string, gender: string): string {
if (gender.toLowerCase() == "male")
return "Mr. " + name;
else
return "Mis. " + name;

}
Registering the Custom Pipe in Application Module file
When we create pipe by default it will register in app.modaule.ts file

import { NgModule } from '@angular/core’;
import { BrowserModule } from '@angular/platform-browser’;

import { AppComponent } from './app.component’;
import { NameprefixPipe } from './nameprefix.pipe’;

@NgModule({
declarations: [
AppComponent,
NameprefixPipe
1
imports: [
BrowserModule

],

providers: [],
bootstrap: [AppComponent]

1)
export class AppModule { }

Now in the final step we add the create pipe in app.component.html file

<table border="1" cellpadding="0" cellspacing="0">
<thead>

<tr style="background-color:blue; color:white">
<th>Employee ID</th>

<th>Name</th>

<th>Gender</th>

</tr>

</thead>

<tbody>

<tr *ngFor='let empobj of Employee'>

<td>{{empobj.ID }}</td>

<td>{{empobj.Name| nameprefix:empobj.Gender}}</td>
<td>{{empobj.Gender }}</td>

</tr>

</tbody>

</table>

Now run the application and validate with prefix. It will work fine.

{10 G Angularcustompipe >
< (@] (D localhost:4200
Employvee I Name Gender

1 Mr. Rohatash{Male
12 NMr. Rajesh Nale
3 Mr. Rahul Nale
-+ Mr. Ritesh Nale
S Mr. RavindarMale
6 NMr. Deepak [Male
7 Mr. Manoj Nale
8 NMis. Deepal:i [Female

Subject vs BehaviorSubject in RxJS

Both are types of Observables that can emit data to multiple subscribers, but they differ in how they store and emit the data.

1. Subject

A Subject is both an Observable and an Observer.
It does not store any previous value — it only emits new values to active subscribers.

Key Points

e Does not have an initial value.
e New subscribers don’t get previous values — only future emissions.
e Used when you want to broadcast data to multiple subscribers.

Example — Subject

import { Subject } from 'rxjs';

const subject = new Subject<string>();
subject.subscribe(val => console.log('Subscriber 1:', val));
subject.next('Hello");

subject.next('Angular');

subject.subscribe(val => console.log('Subscriber 2:', val));
subject.next('RxJS");

Output

Subscriber 1: Hello
Subscriber 1: Angular
Subscriber 1: RxJS
Subscriber 2: RxJS

Notice:

“Subscriber 2” missed the previous values (Hello, Angular).
It only received RxJS — the value emitted after it subscribed.

2. BehaviorSubject
A BehaviorSubject is a special type of Subject that:

e Requires an initial value when created.
e Always stores and replays the latest value to new subscribers immediately.

Key Points

e Has an initial (default) value.
e Always emits the last emitted value to new subscribers.
o Ideal for state management or data sharing between components/services.

Example - BehaviorSubject

import { BehaviorSubject } from 'rxjs';

const behaviorSubject = new BehaviorSubject<string>('Initial Value');
behaviorSubject.subscribe(val => console.log('Subscriber 1:', val));
behaviorSubject.next('First Update');

behaviorSubject.next('Second Update');
behaviorSubject.subscribe(val => console.log('Subscriber 2:', val));
behaviorSubject.next('Third Update');

Output

Subscriber 1: Initial Value
Subscriber 1: First Update
Subscriber 1: Second Update

Subscriber 2: Second Update (got last value immediately)

Subscriber 1: Third Update
Subscriber 2: Third Update

Notice

Subscriber 2 instantly received the last emitted value (Second Update) even though it subscribed later.

Feature Subject BehaviorSubject

Initial Value K No Required

Stores Last Value K No Yes

When Subscribed Later Gets only new values Gets last + new values
Common Use Case Event emitters, user actions Data/state sharing, user info
Number of values emitted Only future Last + future

Best For Broadcasting State management

