

 Angular Chapters

1. Angular-Sample Questions

Q. What is Angular? What are Angular Advantages?

Q. What is RxJS? What are the types of operations in RxJS?

Q. What is Observable? How to implement Observable?

Q. What is the difference between JIT and AOT in Angular?

Q. What is String Interpolation in Angular?

Q. What is Decorator?

Q. What are Pipes? What are the types of Pipes?

Q. What is the difference between Angular Pure Pipe and Impure Pipe?

Q. What are Arrow Functions in Typescript?

Q. How to use Dependency Injector with Services in Angular?

 Q. What is Angular? What are Angular Advantages?

Angular is a TypeScript-based front-end web application
framework developed and maintained by Google. It is
used to build fast, scalable, and maintainable single-page
applications (SPAs).

In simple words

Angular helps you build dynamic websites and web apps
where the page does not reload again and again-only the
required data updates.

Where Angular is used

• Enterprise-level web applications

• Admin dashboards

• Banking & finance apps

Simple Example

Think of Angular like a smart TV interface.

• Screen doesn’t reload completely

• Only required sections update

• Smooth navigation

 Q. What are Angular Advantages ?

RxJS (Reactive Extensions for JavaScript) is a library used in

Angular for handling asynchronous + event-based programming

using Observables.

In simple words

 RxJS helps you handle async data streams easily (API call,

mouse click, search typing, websocket, timer, etc.)

Why RxJS is used?

Because in real applications, data is not always one-time.

Examples of continuous data:

• User typing in textbox (every keypress)

• Button clicks

• API requests

• WebSocket live updates

• Timer / interval

RxJS makes these easy to control and manage.

All this is RxJS power

Real-world Example -Train station announcement

Announcements come continuously:

• "Train A arrived"
• "Train B delayed"
• "Train C departed"

This is like an Observable stream.

You (listener) can:

• listen (subscribe)
• stop listening (unsubscribe)
• filter announcements
• take only first 3 announcements
• retry if missed

What are the types of operations in RXJS ?

 Q. What is RxJS? What are the types of operations in RxJS?

Simple RxJS Example

Output

Example with Operator (map)

Output

RxJS in Angular (Most important use)

An Observable is a data stream that can send data over time.

 It can send:

• 1 value
• many values
• after some delay
• continuously (like live updates)

In Angular, HttpClient.get() returns Observable.

Real-world Example

 YouTube Live Stream

• Stream keeps sending video/audio continuously.
• You can subscribe (watch)
• You can unsubscribe (stop watching)

That’s exactly how Observable works

Example

Here is a real-world example from that we can understand

concept of observables in better way. You may think about

newspaper where subscribers receive newspaper while

non-subscribers do not. The below image show observable

concept.

 Q. What is Observable? How to implement Observable?

JIT compiles Angular code inside the browser at runtime.

Used when

Simple Example

JIT = Cooking food after customer orders.

How it Works

AOT compiles Angular code during the build process, before

deployment, resulting in faster performance, smaller bundles, and

better security.

Used when

Simple Example

AOT = Cooking food in advance and serving immediately.

How it Works

 Q. What is the difference between JIT and AOT in Angular?

String Interpolation

String interpolation is used to bind component data into HTML

template using {{ }} and it is one-way binding (Component → View).

Example

app.component.ts

app.component.html

Real World Example

Dashboard of an app

If a user logs in, Angular shows their name:

 Q. What is String Interpolation in Angular?

A Decorator in Angular/TypeScript is a special function (written

with @) that adds metadata (extra information) to a class,

property, method, or parameter.

Example of Decorator

 Component Decorator

Here, @Component is a decorator which tells Angular:

• This class is a component
• Template file is app.component.html
• Selector is app-root

 Q. What is Decorator?

In Angular, Pipes are a simple way to transform data in the

HTML template (view) without changing the original value

in the component.

Example

Convert text to uppercase, format date, currency, percent,

etc.

{{ 'angular' | uppercase }}

Output - ANGULAR

 Q. What are Pipes? What are the types of Pipes?

1. Pure Pipe

A Pure Pipe executes only when the input value changes (by

reference). It is optimized for performance — Angular does not call

it on every change detection cycle.

When it runs

• When the input value or object reference changes.

• When a new array/object/string/number is assigned.

Simple Analogy

Think of “reference” like a house address:

• The array/object is a house.

• The reference is the address.

If you paint the house (change contents), address stays same →

Angular doesn’t notice.

If you move to a new house (create new array/object), address

changes → Angular notices and re-runs the pipe.

Example (Pure Pipe)

import { Pipe, PipeTransform } from '@angular/core';
@Pipe({
 name: 'pureExample',
 pure: true // default
})
export class PureExamplePipe implements PipeTransform {
 transform(value: any[]): number {
 console.log('Pure pipe executed');
 return value.length;
 }
}

Behavior - If you push an item into the array (without reassigning

it), the pipe won’t run because the reference didn’t change.

 Q. What is the difference between Angular Pure Pipe and Impure Pipe?

2. Impure Pipe

An Impure Pipe runs on every change detection cycle, whether or

not the input changes. This can affect performance, but it’s useful

when you need to respond to mutable data.

When it runs

• On every change detection cycle.

• Even if input data is the same (useful for arrays/objects

modified in place).

Example (Impure Pipe)

import { Pipe, PipeTransform } from '@angular/core';
@Pipe({
 name: 'impureExample',
 pure: false
})
export class ImpureExamplePipe implements PipeTransform {
 transform(value: any[]): number {
 console.log('Impure pipe executed');
 return value.length;
 }
}

Behavior - If you push or pop elements into the same array,

Angular re-runs this pipe every time.

Pure vs Impure Comparison Table

Feature Pure Pipe Impure Pipe

Execution Only when input changes

(by reference)

On every change detection

Performance Fast Slower

Use Case Static or immutable data Dynamic or mutable data

Default

Behavior

pure: true pure: false

Example Date, UpperCase,

Currency pipes

Custom pipes working with

live or changing data

Arrow Functions in TypeScript are a shorter way to write functions

using the => syntax.

They are widely used in TypeScript/Angular/React because they

are:

• Shorter

• Cleaner

• and automatically keep the correct this reference

Normal Function vs Arrow Function

 Normal Function

 Arrow Function (short form)

 Q. What are Arrow Functions in Typescript?

Dependency Injection (DI) in Angular

 Angular automatically creates the Service object and gives it to
the Component when needed.

Component does NOT create service using new keyword.
Angular injects it for you.

Real World Example

Example - Factory & Worker

• Service = Tool (Hammer)
• Component = Worker
• DI = Factory provides tool to worker

Worker doesn’t build tool, factory gives it.

Same in Angular

Component doesn’t create service, Angular provides it.

 Q. How to use Dependency Injector with Services in Angular?

